Mapping new and old buildings are of great significance for understanding socio-economic development in rural areas. In recent years, deep neural networks have achieved remarkable building segmentation results in high-resolution remote sensing images. However, the scarce training data and the varying geographical environments have posed challenges for scalable building segmentation. This study proposes a novel framework based on Mask R-CNN, named Histogram Thresholding Mask Region-Based Convolutional Neural Network (HTMask R-CNN), to extract new and old rural buildings even when the label is scarce. The framework adopts the result of single-object instance segmentation from the orthodox Mask R-CNN. Further, it classifies the rural buildings into new and old ones based on a dynamic grayscale threshold inferred from the result of a two-object instance segmentation task where training data is scarce. We found that the framework can extract more buildings and achieve a much higher mean Average Precision (mAP) than the orthodox Mask R-CNN model. We tested the novel framework’s performance with increasing training data and found that it converged even when the training samples were limited. This framework’s main contribution is to allow scalable segmentation by using significantly fewer training samples than traditional machine learning practices. That makes mapping China’s new and old rural buildings viable.
Land cover information depicting the complex interactions between human activities and surface change is critically essential for nature conservation, social management, and sustainable development. Recent advances have shown great potentials of remote sensing data in generating high-resolution land cover maps, but it remains unclear how different models, data sources, and inclusive features affect the classification results, which hinders its applications in regional studies requiring more accurate land cover data. Informing these issues, here we developed a robust framework to improve the mapping results of 10 m resolution land cover classification in Guangdong Province, China using thousands of manually collected samples, multisource remote sensing data (Sentinel-1, Sentinel-2, and Luojia-1), machine learning algorithms, and a free cloud-based platform of Google Earth Engine. Results showed that an overall accuracy of 86.12% and a Kappa coefficient of 0.84 could be achieved for land cover classification in Guangdong for 2019. We found that Random Forest (RF) models achieved better performance than classification and regression trees (CART), minimum distance (MD), and support vector machine (SVM) models. We also found that features derived from Sentinel-1 data and Sentinel-2 spectral indices greatly contributed to the classification process, while the feature of Luojia-1 data was not as much important as other configurations. A comparison between our results and several existing land cover products in terms of classification accuracy and visual interpretation further validated the effectiveness and robustness of the proposed framework. Our experiments and findings not only systematically elucidate the role of classification methods and data sources in deriving more accurate and reliable land cover maps, but also provide certain guidelines for future land cover mapping from regional to global scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.