The present study concerns a temporally evolving turbulent natural convection boundary layer (NCBL) adjacent to an isothermally heated vertical wall, with Prandtl number 0.71. Three-dimensional direct numerical simulations (DNS) are carried out to investigate the turbulent flow up to $\textit {Gr}_\delta =1.21\times 10^8$ , where $\textit {Gr}_\delta$ is the Grashof number based on the boundary layer thickness $\delta$ . In the near-wall region, there exists a constant heat flux layer, similar to previous studies for the spatially developing flows (e.g. George & Capp, Intl J. Heat Mass Transfer, vol. 22, 1979, pp. 813–826). Beyond a wall-normal distance $\delta _i$ , the NCBL can be characterised as a plume-like region. We find that this region is well described by a self-similar integral model with profile coefficients (cf. van Reeuwijk & Craske, J. Fluid Mech., vol. 782, 2015, pp. 333–355) which are $\textit {Gr}_\delta$ -independent after $\textit {Gr}_\delta =10^7$ . In this Grashof number range both the outer plume-like region and the near-wall boundary layer are turbulent, indicating the beginning of the so-called ultimate turbulent regime (Grossmann & Lohse, J. Fluid Mech., vol. 407, 2000, pp. 27–56; Grossmann & Lohse, Phys. Fluids, vol. 23, 2011, 045108). Solutions to the self-similar integral model are analytically obtained by solving ordinary differential equations with profile coefficients empirically obtained from the DNS results. In the present study, we have found the wall heat transfer of the NCBL is directly related to the top-hat scales which characterise the plume-like region. The Nusselt number is found to follow $\textit {Nu}_\delta \propto \textit {Gr}_\delta ^{0.381}$ , slightly higher than the empirical $1/3$ -power-law correlation reported for spatially developing NCBLs at lower $\textit {Gr}_\delta$ , but is shown to be consistent with the ultimate heat transfer regime with a logarithmic correction suggested by Grossmann & Lohse (Phys. Fluids, vol. 23, 2011, 045108). By modelling the near-wall buoyancy force, we show that the wall shear stress would scale with the bulk velocity only at asymptotically large Grashof numbers.
The stability properties of a natural convection boundary layer adjacent to an isothermally heated vertical wall, with Prandtl number 0.71, are numerically investigated in the configuration of a temporally evolving parallel flow. The instantaneous linear stability of the flow is first investigated by solving the eigenvalue problem with a quasi-steady assumption, whereby the unsteady base flow is frozen in time. Temporal responses of the discrete perturbation modes are numerically obtained by solving the two-dimensional linearized disturbance equations using a ‘frozen’ base flow as an initial-value problem at various $Gr_{\unicode[STIX]{x1D6FF}}$, where $Gr_{\unicode[STIX]{x1D6FF}}$ is the Grashof number based on the velocity integral boundary layer thickness $\unicode[STIX]{x1D6FF}$. The resultant amplification rates of the discrete modes are compared with the quasi-steady eigenvalue analysis, and both two-dimensional and three-dimensional direct numerical simulations (DNS) of the temporally evolving flow. The amplification rate predicted by the linear theory compares well with the result of direct numerical simulation up to a transition point. The extent of the linear regime where the perturbations linearly interact with the base flow is thus identified. The value of the transition $Gr_{\unicode[STIX]{x1D6FF}}$, according to the three-dimensional DNS results, is dependent on the initial perturbation amplitude. Beyond the transition point, the DNS results diverge from the linear stability predictions as nonlinear mechanisms become important.
Results from direct numerical simulations of a vertical natural convection boundary layer (NCBL) with $Pr=0.71$ reveal that the turbulence development of such a thermally driven convective flow has two distinct stages: at relatively low Grashof number, the bulk flow is turbulent while the near-wall region is laminar-like or weakly turbulent; at sufficiently high Grashof number, the entire flow becomes turbulent in the sense of von Kármán (cf. Grossmann & Lohse, J. Fluid Mech., vol. 407, 2000, pp. 27–56, for the ultimate turbulent regime). Investigations on the turbulence statistics show that the near-wall Reynolds shear stress is negligible in the weakly turbulent regime but will grow in magnitude as the flow transitions to the ultimate regime at higher Grashof number. Similar behaviour is also seen in the streamwise turbulence intensity, where it develops from a mono-peak profile into a dual-peak structure as the Grashof number increases. At higher Grashof number, the near-wall energetic site is shown to have an energy distribution similar to that of a canonical wall-bounded turbulence (e.g. Hutchins & Marusic, Phil. Trans. R. Soc.A, vol. 365, 2007, pp. 647–664), with a peak centred at fixed location and wavelength ( $y^+=18$ and $\lambda ^+_x=1000$ ) in viscous coordinates. Investigation on the spanwise spectra also suggests that the turbulent near-wall streaks emerge only at sufficiently high Grashof number, with constant spacing $\lambda _z^+\approx 130$ . The extent of the weakly turbulent regime is identified using the maximum velocity location $\delta_m$ and a laminar length scale $\delta_u$ . The development of near-wall turbulence is also investigated by examining the turbulence kinetic energy budget. In the weakly turbulent regime, the near-wall turbulence is sustained predominantly by the pressure transport in addition to the shear production. At higher Grashof number, the flow becomes fully turbulent, and both turbulent transport and shear production become stronger, while the pressure transport is decreased. These results also reveal that the production–dissipation ratio $P/\varepsilon$ of the NCBL would follow a fundamentally different trend to the canonical wall-bounded flows, which further supports that the near-wall turbulence generation is affected by the bulk flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.