This study combines a financial knowledge dictionary and pretraining method based on BERT (Bidirectional Encoder Representation from Transformers) to construct a deep learning model for identifying stock news sentiments. The study then calculates the sentiment metrics of all stocks and analyzes the impact of news sentiment on the risk of a stock price crash and its heterogeneity. The results show that stocks with more positive sentiment metrics have a higher risk of crash in the following year. We also investigate the information intermediation and investor sentiment channels by which news sentiment affects the risk of a crash. The results show that more net insider sales, lower information transparency, and less analyst coverage amplify the impact of news sentiment on future crash risk, which is consistent with the information intermediation channel. Additionally, more retail investor positions, more active investor sentiment, and divergence between analysts’ opinions and news amplify the impact of news sentiment on the risk of a future stock price crash, which is consistent with the investor sentiment channel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.