We propose a novel video frame interpolation algorithm based on asymmetric bilateral motion estimation (ABME), which synthesizes an intermediate frame between two input frames. First, we predict symmetric bilateral motion fields to interpolate an anchor frame. Second, we estimate asymmetric bilateral motions fields from the anchor frame to the input frames. Third, we use the asymmetric fields to warp the input frames backward and reconstruct the intermediate frame. Last, to refine the intermediate frame, we develop a new synthesis network that generates a set of dynamic filters and a residual frame using local and global information. Experimental results show that the proposed algorithm achieves excellent performance on various datasets. The source codes and pretrained models are available at https://github.com/JunHeum/ABME.
Video interpolation increases the temporal resolution of a video sequence by synthesizing intermediate frames between two consecutive frames. We propose a novel deep-learning-based video interpolation algorithm based on bilateral motion estimation. First, we develop the bilateral motion network with the bilateral cost volume to estimate bilateral motions accurately. Then, we approximate bi-directional motions to predict a different kind of bilateral motions. We then warp the two input frames using the estimated bilateral motions. Next, we develop the dynamic filter generation network to yield dynamic blending filters. Finally, we combine the warped frames using the dynamic blending filters to generate intermediate frames. Experimental results show that the proposed algorithm outperforms the state-of-the-art video interpolation algorithms on several benchmark datasets. The source codes and pretrained models are available at https://github.com/JunHeum/BMBC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.