Microplastics are regarded as vectors of hazardous contaminants due to their ability to adsorb xenobiotic chemicals. This has led to increased interest in the risk of previously neglected microplastic contaminants in the aquatic environment. Here, we assessed the possibility of transferring chemical contaminants to microplastics by evaluating the adsorption performance of (in)organic pollutants on various types of microplastics (polystyrene, PS; polyethylene terephthalate, PET; high-density polyethylene, HDPE; and low-density polyethylene, LDPE;). Considering the toxicity and polarity of each pollutant, dyes (BB9 and RR120) and heavy metals (Cd(II), Pb(II), As(III), and As(V)) were selected for the adsorption experiments. Dye was found to be adsorbed through physical adsorption. The adsorption capacity of microplastics for RR120 and BB9 was the highest for HDPE-1 and LDPE-1, respectively. Additionally, the smaller the size of the microplastics, the higher the adsorbed amounts. The main adsorption mechanism of heavy metals was found to be through physical and chemical adsorption. And adsorption mechanism of dye depends on physical adsorption. Thus, the adsorption of microplastic contaminants was affected more by the condition than by the type of microplastics.
Since microplastics are considered harmful to the human body, studies on their samplings, pretreatments and analyses environmental media, such as water, are continuously being conducted. However, a standard sampling and pretreatment method must be established, particularly because microplastics of a few micrometers in size are easily affected by external contamination. In this study, a microplastic sampling device was designed and developed to obtain a high recovery rate of microplastics and prevent plastics contamination during all processes. For the evaluation of the developed device, microplastic reference materials were produced and used, and computational fluid dynamics (CFD) analysis was performed. This device has not only been applied to the relatively large previously studied microplastics (100 µm) but also to microplastics of approximately 20 µm that are vulnerable to contamination. A recovery rate of 94.2% was obtained using this device, and the particles were separated by filtration through a three-stage cassette. In conclusion, we propose a method to increase the accuracy and reproducibility of results for microplastic contamination in the environment. This method is able to consistently obtain and manage microplastics data, which are often difficult to compare using various existing methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.