Even though Fe-N/C electrocatalysts with abundant Fe-N x active sites have been developed as one of the most promising alternatives to precious metal materials for oxygen reduction reaction (ORR), further improvement of their performance requires precise control over Fe-N x sites at the molecular level and deep understanding of the catalytic mechanism associated with each particular structure. Herein, we report a host−guest chemistry strategy to construct Fe-mIm nanocluster (NC) (guest)@zeolite imidazole framework-8 (ZIF-8) (host) precursors that can be transformed into Fe-N/C electrocatalysts with controllable structures. The ZIF-8 host network exhibits a significant host−guest relationship dependent confinement effect for the Fe-mIm NCs during the pyrolysis process, resulting in different types of Fe-N x sites with two-to five-coordinated configurations on the porous carbon matrix confirmed by X-ray absorption near edge structure (XANES) and Fourier transform (FT) extended X-ray absorption fine structure (EXAFS) spectra. Electrochemical tests reveal that the five-coordinated Fe-N x sites can significantly promote the reaction rate in acid media, due to the small ORR energy barrier and the low adsorption energy of intermediate OH on these sites suggested by density functional theory (DFT) calculations. Such a synthesis strategy provides an effective route to realize the controllable construction of highly active sites for ORR at the molecular level.
Meeting the increasing demand for sensors with high sensitivity, high selectivity, and rapid detection presents many challenges. In the last decade, electronic sensors based on field-effect transistors (FETs) have been widely studied due to their high sensitivity, rapid detection, and simple test procedure. Among these sensors, two-dimensional (2D) nanomaterial-based FET sensors have been demonstrated with tremendous potential for the detection of a wide range of analytes which is attributed to the unique structural and electronic properties of 2D nanomaterials. This comprehensive review discusses the recent progress in graphene-, 2D transition metal dichalcogenide-, and 2D black phosphorus-based FET sensors, with an emphasis on rapid and low-concentration detection of gases, biomolecules, and water contaminants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.