It is a challenge to fabricate graphene bulk materials with properties arising from the nature of individual graphene sheets, and which assemble into monolithic three-dimensional structures. Here we report the scalable self-assembly of randomly oriented graphene sheets into additive-free, essentially homogenous graphene sponge materials that provide a combination of both cork-like and rubber-like properties. These graphene sponges, with densities similar to air, display Poisson's ratios in all directions that are near-zero and largely strain-independent during reversible compression to giant strains. And at the same time, they function as enthalpic rubbers, which can recover up to 98% compression in air and 90% in liquids, and operate between À 196 and 900°C. Furthermore, these sponges provide reversible liquid absorption for hundreds of cycles and then discharge it within seconds, while still providing an effective near-zero Poisson's ratio.
High-performance and novel graphene-based electrothermal films are fabricated through a simple yet versatile solution process. Their electrothermal performances are studied in terms of applied voltage, heating rate, and input power density. The electrothermal films annealed at high temperature show high transmittance and display good heating performance. For example, the graphene-based film annealed at 800 °C, which shows transmittance of over 80% at 550 nm, can reach a saturated temperature of up to 42 °C when 60 V is applied for 2 min. Graphene-based films annealed at 900 and 1000 °C can exhibit high steady-state temperatures of 150 and 206 °C under an applied voltage of 60 V with a maximum heating rate of over 7 °C s(-1) . For flexible heating films patterned on polyimide, a steady-state temperature of 72 °C could be reached in less than 10 s with a maximum heating rate exceeding 16 °C s(-1) at 60 V. These excellent results, combined with the high chemical stability and mechanical flexibility of graphene, indicate that graphene-based electrothermal elements hold great promise for many practical applications, such as defrosting and antifogging devices.
A series of inkjet printing processes have been studied using graphene-based inks. Under optimized conditions, using water-soluble single-layered graphene oxide (GO) and few-layered graphene oxide (FGO), various high image quality patterns could be printed on diverse flexible substrates, including paper, poly(ethylene terephthalate) (PET) and polyimide (PI), with a simple and low-cost inkjet printing technique. The graphene-based patterns printed on plastic substrates demonstrated a high electrical conductivity after thermal reduction, and more importantly, they retained the same conductivity over severe bending cycles. Accordingly, flexible electric circuits and a hydrogen peroxide chemical sensor were fabricated and showed excellent performances, demonstrating the applications of this simple and practical inkjet printing technique using graphene inks. The results show that graphene materials-which can be easily produced on a large scale and possess outstanding electronic properties-have great potential for the convenient fabrication of flexible and low-cost graphenebased electronic devices, by using a simple inkjet printing technique.
A 3D graphitic foam vertically aligned graphitic structure and a low density of defects is derived through chloroaluminate anion intercalation of graphite followed by thermal expansion and electrochemical hydrogen evolution. Such aligned graphitic structure affords excellent Al-ion battery characteristics with a discharge capacity of ≈60 mA h g under a high charge and discharge current density of 12 000 mA g over ≈4000 cycles.
As a promising two-dimensional nanomaterial with outstanding electronic, optical, thermal, and mechanical properties, graphene has been proposed for many applications. In this Progress Report we summarize and discuss comprehensively the advances made so far for applications of graphene in organic photovoltaic (OPV) cells, including that for transparent electrodes, active layers and interfaces layer in OPV. It is concluded that graphene may very likely play a major role in new developments/improvements in OPVs. The future studies for this area are proposed to focus on the following: i) improving the conductivity without comprising the transparency as a transparent electrode material; ii) controlling the sheet sizes, band structure and surface morphology for use as a electron acceptor material, and iii) controlling and improving the functionalization and compatibility with other materials as interface layer material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.