Despite great recent progress with carbon nanotubes and other nanoscale fillers, the development of strong, durable, and cost‐efficient multifunctional nanocomposite materials has yet to be achieved. The challenges are to achieve molecule‐level dispersion and maximum interfacial interaction between the nanofiller and the matrix at low loading. Here, the preparation of poly(vinyl alcohol) (PVA) nanocomposites with graphene oxide (GO) using a simple water solution processing method is reported. Efficient load transfer is found between the nanofiller graphene and matrix PVA and the mechanical properties of the graphene‐based nanocomposite with molecule‐level dispersion are significantly improved. A 76% increase in tensile strength and a 62% improvement of Young's modulus are achieved by addition of only 0.7 wt% of GO. The experimentally determined Young's modulus is in excellent agreement with theoretical simulation.
Due to their unique 2D structure and outstanding intrinsic physical properties, such as extraordinarily high electrical conductivity and large surface area, graphene-based materials exhibit great potential for application in supercapacitors. In this review, the progress made so far for their applications in supercapacitors is reviewed, including electrochemical double-layer capacitors, pseudo-capacitors, and asymmetric supercapacitors. Compared with traditional electrode materials, graphene-based materials show some novel characteristics and mechanisms in the process of energy storage and release. Several key issues for improving the structure of graphene-based materials and for achieving better capacitor performance, along with the current outlook for the field, are also discussed.
Transparent conductive electrodes with high surface conductivity, high transmittance in the visible wavelength range, and mechanical compliance are one of the major challenges in the fabrication of stretchable optoelectronic devices. We report the preparation of a transparent conductive electrode (TCE) based on a silver nanowire (AgNW) percolation network modified with graphene oxide (GO). The monatomic thickness, mechanical flexibility, and strong bonding with AgNWs enable the GO sheets to wrap around and solder the AgNW junctions and thus dramatically reduce the inter-nanowire contact resistance without heat treatment or high force pressing. The GO-soldered AgNW network has a figure-of-merit sheet resistance of 14 ohm/sq with 88% transmittance at 550 nm. Its storage stability is improved compared to a conventional high-temperature annealed AgNW network. The GO-soldered AgNW network on polyethylene terephthalate films was processed from solutions using a drawdown machine at room temperature. When bent to 4 mm radius, its sheet resistance was increased by only 2-3% after 12,000 bending cycles. GO solder can also improve the stretchability of the AgNW network. Composite TCE fabricated by inlaying a GO-soldered AgNW network in the surface layer of polyurethane acrylate films is stretchable, by greater than 100% linear strain without losing electrical conductivity. Fully stretchable white polymer light-emitting diodes (PLEDs) were fabricated for the first time, employing the stretchable TCE as both the anode and cathode. The PLED can survive after 100 stretching cycles between 0 and 40% strain and can be stretched up to 130% linear strain at room temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.