Purpose: Long noncoding RNAs have been implicated in gliomagenesis, but their mechanisms of action are mainly undocumented. Through public glioma mRNA expression data sets, we found that NEAT1 was a potential oncogene. We systematically analyzed the clinical significance and mechanism of NEAT1 in glioblastoma.Experimental Design: Initially, we evaluated whether NEAT1 expression levels could be regulated by EGFR pathway activity. We subsequently evaluated the effect of NEAT1 on the WNT/ b-catenin pathway and its target binding gene. The animal model supported the experimental findings.Results: We found that NEAT1 levels were regulated by EGFR pathway activity, which was mediated by STAT3 and NFkB (p65) downstream of the EGFR pathway. Moreover, we found that NEAT1 was critical for glioma cell growth and invasion by increasing b-catenin nuclear transport and downregulating ICAT, GSK3B, and Axin2. Taken together, we found that NEAT1 could bind to EZH2 and mediate the trimethylation of H3K27 in their promoters. NEAT1 depletion also inhibited GBM cell growth and invasion in the intracranial animal model.Conclusions: The EGFR/NEAT1/EZH2/b-catenin axis serves as a critical effector of tumorigenesis and progression, suggesting new therapeutic directions in glioblastoma. Clin Cancer Res; 1-12.Ó2017 AACR.
RNA is rarely used as a therapeutic target due to its flexible structure and instability. CRISPR‐Cas13a is a powerful tool for RNA knockdown, and the potential application of CRISPR‐Cas13a in cancer cells should be further studied. In this study, overexpression of LwCas13a by lentivirus in glioma cells reveals that crRNA‐EGFP induces a “collateral effect” after knocking down the target gene in EGFP‐expressing cells. EGFRvIII is a unique EGFR mutant subtype in glioma, and the CRISPR‐Cas13a system induces death in EGFRvIII‐overexpressing glioma cells. Bulk and single‐cell RNA sequencing analysis in U87‐Cas13a‐EGFRvIII cells confirm the collateral effect of the CRISPR‐Cas13a system. Furthermore, CRISPR‐Cas13a inhibits the formation of glioma intracranial tumors in mice. The results demonstrate the collateral effect of the CRISPR‐Cas13a system in cancer cells and the powerful tumor‐eliminating potential of this system.
As an essential component of immunotherapy, monoclonal antibodies (mAbs) have emerged as a class of powerful therapeutics for treatment of a broad range of diseases. For central nervous system (CNS) diseases, however, the efficacy remains limited due to their inability to enter the CNS. A platform technology is reported here that enables effective delivery of mAbs to the CNS for brain tumor therapy. This is achieved by encapsulating the mAbs within nanocapsules that contain choline and acetylcholine analogues; such analogues facilitate the penetration of the nanocapsules through the brain–blood barrier and the delivery of mAbs to tumor sites. This platform technology uncages the therapeutic power of mAbs for various CNS diseases that remain poorly treated.
Exosomes play critical roles in intercellular communication in both nearby and distant cells in individuals and organs. Polymerase I and transcript release factor (PTRF), also known as Cavin1, has previously been described as a critical factor in caveola formation, and aberrant PTRF expression has been reported in various malignancies. However, the function of PTRF in tumor progression remains controversial, and its role in glioma is poorly understood. In this study, we report that PTRF is associated with malignancy grade and poor prognosis in glioma patients. Our previous study using two proteomics methods, tandem mass tag (TMT) and data-independent acquisition (DIA), showed that EGFRvIII overexpression increased PTRF expression at the protein level. In contrast, blocking PI3K and AKT using LY294002 and MK-2206, respectively, decreased PTRF expression, showing that PTRF is regulated in the EGFR/PI3K/AKT pathway. ChIP-PCR analysis showed that PTRF is transcriptionally regulated by the H3K4me3 and H3K27me3 modifications. Furthermore, PTRF overexpression increased exosome secretion and induced cell growth in vitro. More importantly, overexpressing PTRF induced the malignancy of nearby cells in vivo, suggesting that PTRF alters the microenvironment through intercellular communication via exosomes. Furthermore, analysis of clinical samples showed a positive correlation between tumor grade and PTRF expression in both tumor tissues and exosomes isolated from blood harvested from glioma patients, and PTRF expression in exosomes isolated from the sera of GBM patients was decreased after surgery. In conclusion, PTRF serves as a promising biomarker in both tumor samples and serum exosomes, thus facilitating the detection of glioma and potentially serving as a therapeutic target for glioblastoma multiforme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.