BackgroundThe 5’ region of cytochrome oxidase I (COI) is the standard marker for DNA barcoding. However, COI has proved to be of limited use in identifying some species, and for some taxa, the coding sequence is not efficiently amplified by PCR. These deficiencies lead to uncertainty as to whether COI is the most suitable barcoding fragment for species identification of ticks.MethodsIn this study, we directly compared the relative effectiveness of COI, 16S ribosomal DNA (rDNA), nuclear ribosomal internal transcribed spacer 2 (ITS2) and 12S rDNA for tick species identification. A total of 307 sequences from 84 specimens representing eight tick species were acquired by PCR. Besides the 1,834 published sequences of 189 tick species from GenBank and the Barcode of Life Database, 430 unpublished sequences representing 59 tick species were also successfully screened by Bayesian analyses. Thereafter, the performance of the four DNA markers to identify tick species was evaluated by identification success rates given by these markers using nearest neighbour (NN), BLASTn, liberal tree-based or liberal tree-based (+threshold) methods.ResultsGenetic divergence analyses showed that the intra-specific divergence of each marker was much lower than the inter-specific divergence. Our results indicated that the rates of correct sequence identification for all four markers (COI, 16S rDNA, ITS2, 12S rDNA) were very high (> 96%) when using the NN methodology. We also found that COI was not significantly better than the other markers in terms of its rate of correct sequence identification. Overall, BLASTn and NN methods produced higher rates of correct species identification than that produced by the liberal tree-based methods (+threshold or otherwise).ConclusionsAs the standard DNA barcode, COI should be the first choice for tick species identification, while 16S rDNA, ITS2, and 12S rDNA could be used when COI does not produce reliable results. Besides, NN and BLASTn are efficient methods for species identification of ticks.
SARS-CoV-2, previously was named as COVID-2019 by the WHO, is now pandemic which has been reported 5,077 human death of 136,895 confirmed cases in 123 countries (updated on 14 March 2020 from WHO official website). The viruses have been successfully isolated, but the pathogenesis mechanisms and effective vaccines are undergoing extensively study. SARS-CoV-2 belongs to Betacoronavirus genera in the subfamily Orthocoronavirinae of family Coronaviridae, in which SARS-CoV and MERS-CoV are also in this group. The natural host of highly pathogenic SARS and MERS coronaviruses was confirmed as bats, and bats are also thought to be the natural hosts for SARS-CoV-2 based upon genomic sequence analysis (Wang, Horby, Hayden, & Gao, 2020). Coronaviruses needed intermediate hosts before being able to infect humans. Masked palm civets and dromedary camels were confirmed as intermediate hosts for SARS-CoV and MERS-CoV (Guarner, 2020), but the intermediate hosts remain unknown for SARS-CoV-2 (Ward, Li, & Tian, 2020). In order to find the intermediate host of SARS-CoV-2, a commercial double-antigen sandwich ELISA, which could be applied for different species of animals, was used to detect SARS-CoV-2-specific antibodies in different species of animals. Before applied to clinical serum samples, the sensitivity and specificity of kit were initially confirmed using SARS-CoV-2-positive and SARS-CoV-2-negative sera from experimental animals including rabbit, mouse, pig and ferret. SARS-CoV-2-negative sera from other species of experimental animals were also used which included chicken, duck, rat, guinea pig, beagle dog and rhesus monkey. After that, the kit was used to detect SARS-CoV-2-specific antibodies in domestic livestock (pig, cow, sheep, horse), poultry (chicken, duck, goose), experimental animals (mice, rat, guinea pig, rabbit and monkey), companion animal (dog and cat) and wild animals (camel, fox, mink, alpaca, ferret, bamboo rat, peacock, eagle, tiger rhinoceros, pangolin, leopard cat, jackal,
Minks are raised in many countries and have transmitted severe acute respiratory syndrome–coronavirus 2 (SARS-CoV-2) to humans. However, the biologic properties of SARS-CoV-2 in minks are largely unknown. Here, we investigated and found that SARS-CoV-2 replicates efficiently in both the upper and lower respiratory tracts, and transmits efficiently in minks via respiratory droplets; pulmonary lesions caused by SARS-CoV-2 in minks are similar to those seen in humans with COVID-19. We further found that a spike protein-based subunit vaccine largely prevented SARS-CoV-2 replication and lung damage caused by SARS-CoV-2 infection in minks. Our study indicates that minks are a useful animal model for evaluating the efficacy of drugs or vaccines against COVID-19 and that vaccination is a potential strategy to prevent minks from transmitting SARS-CoV-2.
Porcine circovirus type 3 (PCV3) was initially reported in 2016 in the United States of America. Since then, the virus has been detected on swine farms in Poland, South Korea, and China using PCR. However, a serological survey of PCV3 in pig populations has never been conducted. In this study, for the first time, we established an indirect enzyme-linked immunosorbent (ELISA) assay and performed a national retrospective serological survey for PCV3. Our results showed that the PCV3-postive rate increased from 22.35% to 51.88% between 2015 and 2017. The above results suggest PCV3 has spread widely in China with increased positive rates since 2015.
Postweaning multisystemic wasting disease (PMWS) in piglets caused by porcine circovirus type 2 (PCV2) is one of the major threats to most pig farms worldwide. Among all the PCV types, PCV2 is the dominant genotype causing PMWS and associated diseases. Considerable efforts were made to study the virus-like-particle (VLP) assembly and the specific PCV2-associated epitope(s) in order to establish the solid foundation for engineered PCV2 vaccine development. Although the N-terminal fragment including Nuclear Localization Signal (NLS) sequence seems important for recombinant PCV2 capsid protein expression and VLP assembly, the detailed structural and functional information regarding this important fragment are largely unknown. In this study, we report crystal structure of PCV2 VLP assembled from N-terminal NLS truncated PCV2 capsid protein at 2.8 Å resolution and cryo-EM structure of PCV2 VLP assembled from full-length PCV2 capsid protein at 4.1Å resolution. Our in vitro PCV2 VLP assembly results show that NLS-truncated PCV2 capsid protein only forms instable VLPs which were easily disassembled in solution, whereas full-length PCV2 capsid protein forms stable VLPs due to interaction between 15PRSHLGQILRRRP27 (α-helix) and 33RHRYRWRRKN42 (NLS-B) in a repeated manner. In addition, our results also showed that N-terminal truncation of PCV2 capsid protein up to 27 residues still forms PCV2 particles in solution with similar size and immunogenicity, while N-terminal truncation of PCV2 capsid protein with more than 30 residues is not able to form stable PCV2 particles in solution, demonstrating the importance of interaction between the α-helix at N-terminal and NLS-B in PCV2 VLP formation. Moreover, we also report the cryo-EM structure of PCV2 VLP in complex with 3H11-Fab, a PCV2 type-specific neutralizing antibody, at 15 Å resolution. MAb-3H11 specifically recognizes one exposed epitope located on the VLP surface EF-loop (residues 128–143), which is further confirmed by PCV1-PCV2 epitope swapping assay. Hence, our results have revealed the structural roles of N-terminal fragment of PCV2 capsid protein in PCV2 particle assembly and pinpointed one PCV2 type-specific neutralizing epitope for the first time, which could provide clear clue for next generation PCV2 vaccine and diagnostic kits development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.