The Pidgeon process is the main extraction method of magnesium, but its continuous production cannot be achieved due to the switch between vacuum and atmospheric pressure. Therefore, it is vital to realize continuous extraction of magnesium under atmospheric pressure. In this paper, the process of extracting magnesium from prefabricated pellets in flowing argon was proposed. The isothermal kinetic analysis of the reduction process was carried out. The results showed that the reduction process was controlled by diffusion process in 1 h, and the apparent activation energy of extracting magnesium from prefabricated pellets in flowing argon was 218.75 kJ/mol. Then the influence of experimental factors on the reduction rate was explored, including briquetting pressure, carrier gas flow rate, ferrosilicon content, reaction temperature and time. Through analysis and calculation, it was concluded that the main control step of diffusion process was silicon diffusion.
The nucleation and condensation of Magnesium (Mg) vapor carried by argon gas (Ar) were examined. The condensation of Mg vapor at a heat source temperature of 1273–1473 K and Ar flow rate of 0.1–0.4 m3/h was analyzed. The result indicated that the condensation temperature is affected by the heat source temperature and Ar flow rate, and the condensation temperature of Mg vapor was 1013.3 K at a heat source temperature of 1473 K and Ar flow rate of 0.2 m3/h. The effects of Mg vapor partial pressure and temperature of the condensation zone on the nucleation and condensation of Mg vapor carried by Ar were calculated and analyzed in terms of atomic collisions and critical nucleation radius. Increased vapor oversaturation and decreased condensation temperature were favorable for liquid nucleation growth. The Mg condensation products in Ar flow rate of 0.2 m3/h at a heat source temperature of 1473 K were analyzed by XRD, SEM, and EDS, which indicated that the condensed product was of high purity and not easily oxidized in Ar flow. In this paper, the quality of Mg vapor condensation was controlled, which provided the theoretical and experimental basis for a continuous Mg production process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.