Epigenetic gene regulation and metabolism are highly intertwined, yet little is known about whether altered epigenetics infl uence cellular metabolism during cancer progression. Here, we show that EZH2 and NRAS G12D mutations cooperatively induce progression of myeloproliferative neoplasms to highly penetrant, transplantable, and lethal myeloid leukemias in mice. EZH1, an EZH2 homolog, is indispensable for EZH2-defi cient leukemia-initiating cells and constitutes an epigenetic vulnerability. BCAT1, which catalyzes the reversible transamination of branched-chain amino acids (BCAA), is repressed by EZH2 in normal hematopoiesis and aberrantly activated in EZH2defi cient myeloid neoplasms in mice and humans. BCAT1 reactivation cooperates with NRAS G12D to sustain intracellular BCAA pools, resulting in enhanced mTOR signaling in EZH2-defi cient leukemia cells. Genetic and pharmacologic inhibition of BCAT1 selectively impairs EZH2-defi cient leukemiainitiating cells and constitutes a metabolic vulnerability. Hence, epigenetic alterations rewire intracellular metabolism during leukemic transformation, causing epigenetic and metabolic vulnerabilities in cancer-initiating cells. SIGNIFICANCE: EZH2 inactivation and oncogenic NRAS cooperate to induce leukemic transformation of myeloproliferative neoplasms by activating BCAT1 to enhance BCAA metabolism and mTOR signaling. We uncover a mechanism by which epigenetic alterations rewire metabolism during cancer progression, causing epigenetic and metabolic liabilities in cancer-initiating cells that may be exploited as potential therapeutics.
Mutations in IDH genes occur frequently in acute myeloid leukemia (AML) and other human cancers to generate the oncometabolite R-2HG. Allosteric inhibition of mutant IDH suppresses R-2HG production in a subset of AML patients; however, acquired resistance emerges as a new challenge and the underlying mechanisms remain incompletely understood. Here we establish isogenic leukemia cells containing common IDH oncogenic mutations by CRISPR base editing. By mutational scanning of IDH single-amino acid variants in base-edited cells, we describe a repertoire of IDH second-site mutations responsible for therapy resistance through disabling uncompetitive enzyme inhibition. Recurrent mutations at NADPH binding sites within IDH heterodimers act in cis or trans to prevent the formation of stable enzyme-inhibitor complexes, restore R-2HG production in the presence of inhibitors, and drive therapy resistance in IDH-mutant AML cells and patients. We therefore uncover a new class of pathogenic mutations and mechanisms for acquired resistance to targeted cancer therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.