The analysis of the behavior of soil and foundations when the piles in offshore areas are subjected to long-term lateral loading (wind) is one of the major problems associated with the smooth operation of superstructure. The strength of the pile-soil system is influenced by variations in the water content of the soil. At present, there are no studies carried out analyzing the mechanical and deformational behavior of both the material of the laterally loaded piles and soil with groundwater level as a variable. In this paper, a series of 1-g model tests were conducted to explore the lateral behavior of both soil and monopile under unidirectional cyclic loading, based on the foundation of an offshore wind turbine near the island. The influence of underground water level and cyclic load magnitude on the performance of the pile–soil system was analyzed. To visualize the movements of soil particles during the experimental process, particle image velocimetry (PIV) was used to record the soil displacement field under various cyclic loading conditions. The relationship curves between pile top displacement and cyclic steps, as well as the relationship curves between cyclic stiffness and cyclic steps, were displayed. Combined with fractal theory, the fractal dimension of each curve was calculated to evaluate the sensitivity of the pile–soil interaction system. The results showed that cyclic loading conditions and groundwater depth are the main factors affecting the pile–soil interaction. The cyclic stiffness of the soil increased in all test groups as loading progressed; however, an increase in the cyclic load magnitude decreased the initial and cyclic stiffness. The initial and cyclic stiffness of dry soil was higher than that of saturated soil, but less than that of unsaturated soil. The ability of the unsaturated soil to limit the lateral displacement of the pile decreased as the depth of the groundwater level dropped. The greater the fluctuation of the pile top displacement, the larger the fractal dimension of each relationship curve, with a variation interval of roughly 1.24–1.38. The average increment of the cumulative pile top displacement between each cycle step following the cyclic loading was positively correlated with fractal dimension. Based on the PIV results, the changes in the pile–soil system were predominantly focused in the early stages of the experiment, and the short-term effects of lateral cyclic loading are greater than the long-term effects. In addition, this research was limited to a single soil layer. The pile–soil interaction under layered soil is investigated, and the results will be used in more complex ground conditions in the future.
As a kind of highly weathered special soil in South China, granite residual soils (GRS) feature high strength and high void ratio in a dry environment, so they tend to disintegrate in water and cause geological disasters including collapse. Therefore, modifying GRS for higher strength has become a hot spot. Glass fiber reinforced soils boast fewer cracks, higher energy absorption, and residual strength. This study aims to analyze the reinforcement effect of glass fibers on GRS with inorganic and organic solutions and its environmental feasibility. The inorganic solution contains silicon ion and sodium ion at the ratio of 1 : 4 (hereinafter referred to as Si : Na = 1 : 4 solutions), and the organic one is a modified polyvinyl alcohol solution (hereinafter referred to as SH solution). The reinforced samples were subjected to plate and impact load tests, SEM, and XRD analysis to investigate their mechanical properties, microcharacteristics, and the components produced. Results indicate that the reinforcement effect of glass fibers on GRS under Si : Na = 1 : 4 solutions was better than that of SH solutions. After being reinforced by Si : Na = 1 : 4 solutions, the samples reached maximum impact resistance. SEM results show that glass fibers bond more soil and form an integral structure; thereby the strength was improved as glass fibers share external impact load. XRD results show that geopolymer and alkali-activated materials and potassium feldspar were formed. Geopolymer and alkali-activated materials are pollution-free, inorganic polymers featuring viscosity and high compressive strength. Potassium feldspar is an aluminosilicate mineral with high strength and stable chemical properties, which can adhere to more granules and form a stronger whole structure with geopolymers playing a role. Therefore, it is feasible to reuse these soils sustainably by reinforcing them with glass fibers and the best Si : Na = 1 : 4 solutions. This study finds a new direction for recycling and reusing construction waste, GRS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.