This study investigates the effects of various non-animal-based liquid additives on the physicochemical, structural, and sensory properties of meat analogue. Meat analogue was prepared by blending together textured vegetable protein (TVP), soy protein isolate (SPI), and other liquid additives. Physicochemical (rheological properties, cooking loss (CL), water holding capacity (WHC), texture and color), structural (visible appearance and microstructure), and sensory properties were evaluated. Higher free water content of meat analogue due to water treatment resulted in a decrease in viscoelasticity, the highest CL value, the lowest WHC and hardness value, and a porous structure. Reversely, meat analogue with oil treatment had an increase in viscoelasticity, the lowest CL value, the highest WHC and hardness value, and a dense structure due to hydrophobic interactions. SPI had a positive effect on the gel network formation of TVP matrix, but lecithin had a negative effect resulting in a decrease in viscoelasticity, WHC, hardness value and an increase in CL value and pore size at microstructure. The results of sensory evaluation revealed that juiciness was more affected by water than oil. Oil treatment showed high intensity for texture parameters. On the other hand, emulsion treatment showed high preference scores for texture parameters and overall acceptance.
In this study, the physical and sensorial properties of the meat analog were studied for the purpose of improving sensory preference and mimicking animal meat. The meat analog was made with different types of liquid materials such as oil, water, lecithin, polysorbate 80, or the emulsion of these components. At the aspect of density, the sample mixed with oil was higher than the sample mixed with water. Cooking loss value was higher at the sample with water than the sample with oil and this was the result opposite to the liquid holding capacity analysis. Also, texture profile analysis result showed that the samples with medium chain triglycerides (MCT) oil only showed the highest values in all attributes except for adhesiveness. Principal component analysis was carried out to analyze sensorial properties and it showed that the overall acceptance was high when the juiciness and softness increased. This result was highly related with the addition of emulsion. Therefore, emulsion technology can be a good candidate for improving the quality of meat analog and for mimicking the taste of animal meat.
This study identified the effect of the type and concentration of vegetable oil on the quality of meat analogs and analyzed the differences in their physiochemical characteristics. Various vegetable oils, such as castor oil, orange oil, palm oil, shortening, and margarine, were added to meat analogs. The meat analog was prepared by adding 10, 20, 30, 40, and 50 g of each vegetable oil based on 100 g of textured vegetable protein. The cooking loss, water content, liquid-holding capacity, texture, and antioxidant content of the meat analogs were assessed, and a sensory evaluation was performed. The meat analog with orange oil had a higher water content than the others, regardless of the amount of added oil, and it had a relatively high liquid-holding capacity. The DPPH(2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity of the meat analog with orange oil was higher than that of the others. The sensory evaluation also showed a decrease in soy odor and an increase in juiciness. Therefore, adding orange oil improves the preference, juiciness, soy odor, and quality of meat analogs. Our results demonstrate that orange oil has positive effects on the productivity of meat analogs and can help to improve meat analog consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.