Colloidal nanoparticles are of great interest in modern science and industry, yet the thermodynamic origin of nanoparticle formation remains a mystery and nanoparticle growth frequently exhibits nonclassical dynamics. Here, we tracked hundreds of in-situ growth trajectories of a nanoparticle ensemble using an advanced liquid-phase-TEM, and discovered that nanoparticle growth, including coalescence, exhibits monomer supply rate dependent multiphasic dynamics, unexplainable by current theories. Motivated by this finding, we developed a realistic model and statistical theories of growing nanoparticles, providing a unified, quantitative understanding of the mean and fluctuation of nanoparticle size and size-dependent growth rate across various nanoparticle systems and experimental conditions. Our work reveals that the chemical potential in a nanoparticle has a finite maximum at a critical size and exhibits a nonclassical dependence on nanoparticle size. This clear discrepancy from the classical nucleation theory (CNT) results from the strongly non-extensive free energy originating from nanoparticle motion, configurational degeneracy, and edge interaction, which were neglected in the CNT. We also uncover how this chemical potential in a nanoparticle governs formation and growth dynamics of an ensemble of nanoparticles, together with the time-dependent monomer concentration in solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.