Single‐atom nanozymes (SAzymes) are promising in next‐generation nanozymes, nevertheless, how to rationally modulate the microenvironment of SAzymes with controllable multi‐enzyme properties is still challenging. Herein, we systematically investigate the relationship between atomic configuration and multi‐enzymatic performances. The constructed MnSA−N3‐coordinated SAzymes (MnSA−N3−C) exhibits much more remarkable oxidase‐, peroxidase‐, and glutathione oxidase‐like activities than that of MnSA−N4−C. Based on experimental and theoretical results, these multi‐enzyme‐like behaviors are highly dependent on the coordination number of single atomic Mn sites by local charge polarization. As a consequence, a series of colorimetric biosensing platforms based on MnSA−N3−C SAzymes is successfully built for specific recognition of biological molecules. These findings provide atomic‐level insight into the microenvironment of nanozymes, promoting rational design of other demanding biocatalysts.
Single‐atom nanozymes (SAzymes) are promising in next‐generation nanozymes, nevertheless, how to rationally modulate the microenvironment of SAzymes with controllable multi‐enzyme properties is still challenging. Herein, we systematically investigate the relationship between atomic configuration and multi‐enzymatic performances. The constructed MnSA−N3‐coordinated SAzymes (MnSA−N3−C) exhibits much more remarkable oxidase‐, peroxidase‐, and glutathione oxidase‐like activities than that of MnSA−N4−C. Based on experimental and theoretical results, these multi‐enzyme‐like behaviors are highly dependent on the coordination number of single atomic Mn sites by local charge polarization. As a consequence, a series of colorimetric biosensing platforms based on MnSA−N3−C SAzymes is successfully built for specific recognition of biological molecules. These findings provide atomic‐level insight into the microenvironment of nanozymes, promoting rational design of other demanding biocatalysts.
In recent decades, concerns about increasing biological and environmental contamination have necessitated the development of chemosensors with high selectivity, sensitivity, and cost-effectiveness. In principle, the sensing performance can be affected by the functional group(s) of receptor, the charge of the metal ion(s), and the electron configuration of the sensing molecule(s)e and metal ion(s). Fine controlling of the substituents can influence the electron density of the receptor to enhance the binding affinity to metal ions, which is an effective way to improve the photophysical properties of the sensors. This review explores the effect of functional group modification on the performance of various chemosensors represented by Pt(dithiolene)-based complexes (2012–2021). Then, recently developed Schiff base chemosensors (2014–2021) are discussed. The Schiff base is a good platform for controlling electron configuration due to a facile synthesis of various organic structures (aldehyde or ketone groups with primary amine derivatives). The discussion focuses on the detection type, physicochemical and optical properties, and applications of these chemosensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.