Low-cost renewable lignin has been used as a precursor to produce porous carbons. However, to date, it has not been easy to obtain high surface area porous carbon without activation processes or templating agents. Here, we demonstrate that low molecular weight lignin yields highly porous carbon with more graphitization through direct carbonization without additional activation processes or templating agents. We found that molecular weight and oxygen consumption during carbonization are critical factors to obtain high surface area, graphitized porous carbons. This highly porous carbon from low-cost renewable lignin sources is a good candidate for supercapacitor electrode materials.
Localized surface plasmon (LSP) effects due to Ag and Ag/SiO2 nanoparticles (NPs) deposited on GaN/InGaN multiquantum well (MQW) light‐emitting diode (LED) structures are studied. The colloidal NPs are synthesized by a sol‐gel method and drop‐cased on the LED structures. The surface density of NPs its controlled by the concentration of the NP solution. Theoretical modeling is performed for the emission spectrum and the electric field distribution of LSP resonance for Ag/SiO2 NPs. Enhanced photoluminescence (PL) efficiency is observed in the LED structures and the amount of PL enhancement increases with increasing the surface density of Ag and Ag/SiO2 NPs. These effects are attributed to resonance coupling between the MQW and LSP in the NPs. It is also shown that the PL enhancement attainable with Ag NPs and Ag/SiO2 NPs is comparable, but the latter displays a much higher stability with respect to long‐term storage and annealing due to a barrier for NP agglomeration, Ag oxidation, and impurity diffusion provided by the SiO2 shell.
Organic p‐type materials are potential candidates as solution processable hole transport materials (HTMs) for colloidal quantum dot solar cells (CQDSCs) because of their good hole accepting/electron blocking characteristics and synthetic versatility. However, organic HTMs have still demonstrated inferior performance compared to conventional p‐type CQD HTMs. In this work, organic π‐conjugated polymer (π‐CP) based HTMs, which can achieve performance superior to that of state‐of‐the‐art HTM, p‐type CQDs, are developed. The molecular engineering of the π‐CPs alters their optoelectronic properties, and the charge generation and collection in CQDSCs using them are substantially improved. A device using PBDTTPD‐HT achieves power conversion efficiency (PCE) of 11.53% with decent air‐storage stability. This is the highest reported PCE among CQDSCs using organic HTMs, and even higher than the reported best solid‐state ligand exchange‐free CQDSC using pCQD‐HTM. From the viewpoint of device processing, device fabrication does not require any solid‐state ligand exchange step or layer‐by‐layer deposition process, which is favorable for exploiting commercial processing techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.