BACKGROUND: Signal transducer and activator of transcription 3 (STAT3) regulates the expression of genes that mediate cell survival, proliferation, and angiogenesis and is aberrantly activated in various types of malignancies, including renal cell carcinoma (RCC). We examined whether it could be a novel therapeutic target for RCC by using the STAT3 inhibitor WP1066. METHODS: The antitumour activities and related mechanisms of WP1066 were investigated in vitro on renal cancer cell lines and in vivo on murine xenografts. RESULTS: In Caki-1 and 786-O renal cancer cells, 5 mM WP1066 prevented the phosphorylation of STAT3, and 2.5 mM WP1066 significantly (Po0.01) inhibited cell survival and proliferation. WP1066 suppressed the expression of Bcl-2, induced apoptosis, and inhibited the basal and hypoxia-induced expression of HIF1a and HIF2a, as well as vascular endothelial growth factor secretion into cell culture medium. Human umbilical vascular endothelial cells cocultured with media from WP1066-treated cells showed significantly reduced tubulogenesis (Po0.05). Systemic oral administration of WP1066 to mice for 19 days significantly inhibited the growth of Caki-1 xenograft tumours (Po0.05), and pathological analysis of xenografts of WP1066-treated mice showed decreased immunostaining of phosphorylated STAT3 and reduced length of CD34-positive vessels (Po0.05). CONCLUSIONS: Our results suggest that using WP1066 to inhibit the STAT3 signalling pathway could be a novel therapeutic strategy against RCC.
Conclusions: Because our results suggest that fluvastatin may effectively inhibit in vitro tumor growth, invasion, angiogenesis, and metastasis of Renca cells, oral administration of fluvastatin could be a novel, safe, and effective agent for preventing metastasis of renal cancer.
We studied the role of protein kinase C isoform PKCδ in ceramide (Cer) formation, as well as in the mitochondrial apoptosis pathway induced by anticancer drugs in prostate cancer (PC) cells. Etoposide and paclitaxel induced Cer formation and apoptosis in PKCδ-positive LNCaP and DU145 cells but not in PKCδ-negative LN-TPA or PC-3 cells. In contrast, these drugs induced mitotic cell cycle arrest in all PC cell lines. Treatment with Rottlerin, a specific PKCδ inhibitor, significantly inhibited drug-induced Cer formation and apoptosis in LNCaP cells, as did overexpression of dominant negative-type PKCδ. Overexpression of wild-type PKCδ had an opposite effect in PC-3 cells. Notably, etoposide induced biphasic Cer formation in LNCaP cells. The early and transient Cer increase resulted from de novo Cer synthesis, while the late and sustained Cer accumulation was derived from sphingomyelin hydrolysis by neutral sphingomyelinase (nSMase). Cer, in turn, induced mitochondrial translocation of PKCδ and stimulated the activity of this kinase, promoting cytochrome c release and caspase-9 activation. Furthermore, the specific caspase-9 inhibitor LEHD-fmk significantly inhibited etoposide-induced nSMase activation, Cer accumulation, and PKCδ mitochondrial translocation. These results indicate that PKCδ plays a crucial role in activating anticancer drug-induced apoptosis signaling by amplifying the Cer-mediated mitochondrial amplification loop.
Leptin promoted the invasiveness of murine renal cancer cells via extracellular signal-regulated kinases and rho guanosine triphosphatase dependent pathways. Rho guanosine triphosphatase was a downstream effector of extracellular signal-regulated kinases in leptin induced invasion. Leptin signaling could have a key role in renal cell carcinoma invasion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.