System L is a major nutrient transport system responsible for the transport of large neutral amino acids including several essential amino acids. We previously identified a transporter (L-type amino acid transporter 1: LAT1) subserving system L in C6 rat glioma cells and demonstrated that LAT1 requires 4F2 heavy chain (4F2hc) for its functional expression. Since its oncofetal expression was suggested in the rat liver, it has been proposed that LAT1 plays a critical role in cell growth and proliferation. In the present study, we have examined the function of human LAT1 (hLAT1) and its expression in human tissues and tumor cell lines. When expressed in Xenopus oocytes with human 4F2hc (h4F2hc), hLAT1 transports large neutral amino acids with high affinity (K(m)= approximately 15- approximately 50 microM) and L-glutamine and L-asparagine with low affinity (K(m)= approximately 1.5- approximately 2 mM). hLAT1 also transports D-amino acids such as D-leucine and D-phenylalanine. In addition, we show that hLAT1 accepts an amino acid-related anti-cancer agent melphalan. When loaded intracellularly, L-leucine and L-glutamine but not L-alanine are effluxed by extracellular substrates, confirming that hLAT1 mediates an amino acid exchange. hLAT1 mRNA is highly expressed in the human fetal liver, bone marrow, placenta, testis and brain. We have found that, while all the tumor cell lines examined express hLAT1 messages, the expression of h4F2hc is varied particularly in leukemia cell lines. In Western blot analysis, hLAT1 and h4F2hc have been confirmed to be linked to each other via a disulfide bond in T24 human bladder carcinoma cells. Finally, in in vitro translation, we show that hLAT1 is not a glycosylated protein even though an N-glycosylation site has been predicted in its extracellular loop, consistent with the property of the classical 4F2 light chain. The properties of the hLAT1/h4F2hc complex would support the roles of this transporter in providing cells with essential amino acids for cell growth and cellular responses, and in distributing amino acid-related compounds.
A cDNA encoding a multispecific organic anion transporter 3 (hOAT3) was isolated from a human kidney cDNA library. The hOAT3 cDNA consisted of 2179 base pairs that encoded a 543-amino-acid residue protein with 12 putative transmembrane domains. The deduced amino acid sequence of hOAT3 showed 36 to 51% identity to those of other members of the OAT family. Northern blot analysis revealed that hOAT3 mRNA is expressed in the kidney, brain, and skeletal muscle. When expressed in Xenopus laevis oocytes, hOAT3 mediated the transport of estrone sulfate (K(m) = 3.1 microM), p-aminohippurate (K(m) = 87.2 microM), methotrexate (K(m) = 10.9 microM), and cimetidine (K(m) = 57.4 microM) in a sodium-independent manner. hOAT3 also mediated the transport of dehydroepiandrosterone sulfate, ochratoxin A, PGE(2), estradiol glucuronide, taurocholate, glutarate, cAMP and uric acid. Estrone sulfate did not show any trans-stimulatory effects on either influx or efflux of [(3)H]estrone sulfate via hOAT3. hOAT3 interacted with chemically heterogeneous anionic compounds, such as nonsteroidal anti-inflammatory drugs, diuretics, sulfobromophthalein, penicillin G, bile salts and tetraethyl ammonium bromide. The hOAT3 protein was shown to be localized in the basolateral membrane of renal proximal tubules and the hOAT3 gene was determined to be located on the human chromosome 11q12-q13.3 by fluorescent in situ hybridization analysis. These results suggest an important role of hOAT3 in the excretion/detoxification of endogenous and exogenous organic anions in the kidney.
Aberrant DNA methylation plays an important role in genesis of colorectal cancer (CRC). Previously, we identified Group 1 and Group 2 methylation markers through genome-wide DNA methylation analysis, and classified CRC and protruded adenoma into three distinct clusters: high-, intermediate-and low-methylation epigenotypes. High-methylation epigenotype strongly correlated with BRAF mutations and these aberrations were involved in the serrated pathway, whereas intermediate-methylation epigenotype strongly correlated with KRAS mutations. Here, we investigated laterally spreading tumors (LSTs), which are flat, early CRC lesions, through quantitative methylation analysis of six Group 1 and 14 Group 2 methylation markers using pyrosequencing. Gene mutations in BRAF, KRAS and PIK3CA, and immunostaining of TP53 and CTNNB1 as well as other clinicopathological factors were also evaluated. By hierarchical clustering using methylation information, LSTs were classified into two subtypes; intermediate-methylation epigenotype correlating with KRAS mutations (p 5 9 3 10 24 ) and a granular morphology (LST-G) (p 5 1 3 10 27 ), and low-methylation epigenotype correlating with CTNNB1 activation (p 5 0.002) and a nongranular morphology (LST-NG) (p 5 1 3 10 27 ). Group 1 marker methylation and BRAF mutations were barely detected, suggesting that high-methylation epigenotype was unlikely to be involved in LST development. TP53 mutations correlated significantly with malignant transformation, regardless of epigenotype or morphology type. Together, this may suggest that two molecular pathways, intermediate methylation associated with KRAS mutations and LST-G morphology, and low methylation associated with CTNNB1 activation and LST-NG morphology, might be involved in LST development, and that involvement of TP53 mutations could be important in both subtypes in the development from adenoma to cancer.Colorectal cancer (CRC) arises through accumulation of multiple genetic and epigenetic alterations. 1-3 Somatic mutations in KRAS, APC and TP53 are well-known genetic alterations, which were demonstrated in the model of adenoma-carcinoma sequence. 4 Recent exome sequencing studies revealed the involvement of somatic mutations of other genes, e.g., SMAD4, PIK3CA, TCF7L2, ARID1A and TET family genes, or amplification of ERBB2 and IGF2. 5,6 In addition, aberrant DNA methylation of gene promoters has been reported to be a major epigenetic mechanism for silencing tumor-suppressor genes involved in colorectal carcinogenesis. 2,7 We previously performed DNA methylation analysis of CRC on genome-wide scale and identified Group 1 and Group 2 methylation markers to classify CRC into three distinct subsets, 8,9 which has also been reported by other groups. [10][11][12] Highmethylation epigenotype [or CpG island methylator phenotype (CIMP) 13 ] showed methylation of both Group 1 and Group 2 markers, while intermediate-methylation epigenotype showed methylation of Group 2 but not Group 1 markers, and lowmethylation epigenotype showed methylation of neithe...
To clarify molecular alterations in serrated pathway of colorectal cancer (CRC), we performed epigenetic and genetic analyses in sessile serrated adenoma/polyps (SSA/P), traditional serrated adenomas (TSAs) and high‐methylation CRC. The methylation levels of six Group‐1 and 14 Group‐2 markers, established in our previous studies, were analyzed quantitatively using pyrosequencing. Subsequently, we performed targeted exon sequencing analyses of 126 candidate driver genes and examined molecular alterations that are associated with cancer development. SSA/P showed high methylation levels of both Group‐1 and Group‐2 markers, frequent BRAF mutation and occurrence in proximal colon, which were features of high‐methylation CRC. But TSA showed low‐methylation levels of Group‐1 markers, less frequent BRAF mutation and occurrence at distal colon. SSA/P, but not TSA, is thus considered to be precursor of high‐methylation CRC. High‐methylation CRC had even higher methylation levels of some genes, e.g., MLH1, than SSA/P, and significant frequency of somatic mutations in nonsynonymous mutations (p < 0.0001) and insertion/deletions (p = 0.002). MLH1‐methylated SSA/P showed lower methylation level of MLH1 compared with high‐methylation CRC, and rarely accompanied silencing of MLH1 expression. The mutation frequencies were not different between MLH1‐methylated and MLH1‐unmethylated SSA/P, suggesting that MLH1 methylation might be insufficient in SSA/P to acquire a hypermutation phenotype. Mutations of mismatch repair genes, e.g., MSH3 and MSH6, and genes in PI3K, WNT, TGF‐β and BMP signaling (but not in TP53 signaling) were significantly involved in high‐methylation CRC compared with adenoma, suggesting importance of abrogation of these genes in serrated pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.