SummarySekiguchi lesion (sl)-mutant rice infected with Magnaporthe grisea showed increased light-dependent tryptophan decarboxylase (TDC) and monoamine oxidase (MAO) activities. TDC and MAO activities were observed before the penetration of M. grisea to rice cells and maintained high levels even after Sekiguchi lesion formation. Light-dependent expression of TDC gene was observed in leaves inoculated with M. grisea before Sekiguchi lesion formation. Spore germination¯uid (SGF) of M. grisea also induced Sekiguchi lesion formation accompanied by increased enzymes activities and tryptamine accumulation. Sekiguchi lesion was also induced by treatments with tryptamine and b-phenylethylamine, which are substrates for MAO, but was not induced by non-substrates such as indole-3-propionic acid, (AE)-phenylethylamine and tryptophan under light. Light-dependent induction of Sekiguchi lesion by tryptamine was signi®cantly inhibited in the presence of MAO inhibitors, metalaxyl and semicarbazide, and H 2 O 2 -scavengers, ascorbic acid and catalase. H 2 O 2 in M. grisea-infected leaves with and without Sekiguchi lesions was demonstrated directly in situ by strong 3,3 H -diaminobenzidine (DAB) staining. On the other hand, H 2 O 2 induced Sekiguchi lesions on leaves of cv. Sekiguchi-asahi under light, but not in darkness. This difference was associated with the decrease of catalase activity in infected leaves under light and the absence of decrease in darkness. We hypothesize that the H 2 O 2 -induced breakdown of cellular organelles such as chloroplasts and mitochondria in mesophyll cells may cause high TDC and MAO activities and the development of Sekiguchi lesion, and that the sl gene products in wild-type rice may function as a suppressor of organelle breakdown caused by chemical or environmental stress.
A polyketide synthase gene named PKS1, involved in the melanin biosynthesis pathway of the phytopathogenic fungus Bipolaris oryzae, was isolated using restriction enzyme-mediated integration. Sequence analysis showed that the PKS1 encodes a putative protein that has 2155 amino acids and significant similarity to other fungal polyketide synthases. Targeted disruption of the PKS1 gene showed that it is necessary for melanin biosynthesis in B. oryzae. Northern blot analysis showed that PKS1 transcripts were specifically enhanced by near-ultraviolet radiation (300-400 nm) and that its temporal transcriptional patterns were similar to those of THR1 and SCD1 genes involved in the melanin biosynthesis pathway of B. oryzae.
Mitogen-activated protein kinases (MAPKs) play key roles in biological processes including differentiation, growth, proliferation, survival, and stress responses. We isolated and characterized the SRM1 gene, which encodes an MAPK related to yeast High-osmolarity glycerol 1 (Hog1), from the rice leaf pathogen Bipolaris oryzae. The deduced amino sequence of the SRM1 gene showed significant homology with Hog1-type MAPK homologues from other phytopathogenic fungi and contained a TGY motif for phosphorylation. The B. oryzae mutants with disruption of the SRM1 gene (Deltasrm1) showed growth inhibition under hyperosmotic, hydrogen peroxide, and UV exposure conditions. The Deltasrm1 mutants showed moderate resistance to dicarboximide and phenylpyrrole fungicides. The Deltasrm1 mutations caused a defect in the expression of the gene that encodes antioxidant enzyme catalase (CAT2) under UV and hyperosmotic conditions. Furthermore, the transcriptional patterns of the three melanin biosynthesis genes (PKS1, THR1, and SCD1) and of a gene of unknown function, uvi-1, which are specifically induced by near-ultraviolet (NUV) radiation, gradually decreased in comparison with the wild-type expression patterns. These results suggest that Srm1 contributes to responses to not only osmostress but also to hydrogen peroxide and UV stress, whereas Srm1 does not appear to regulate directly the expression of genes related to NUV-induced photomorphogenesis.
We isolated and characterized Bipolaris melanin regulation 1 gene (BMR1) encoding a transcription factor for melanin biosynthesis genes in the phytopathogenic fungus Bipolaris oryzae. Sequence analysis showed that the BMR1 gene encodes a putative protein of 1012 amino acids that has 99% sequence similarity to transcription factor Cmr1 of Cochliobolus heterostrophus. The predicted B. oryzae Bmr1 protein has two DNA-binding motifs, two Cys2His2 zinc finger domains, and a Zn(II)2Cys6 binuclear cluster domain at the N-terminal region of Bmr1. Targeted disruption of the BMR1 gene showed that BMR1 is essential for melanin biosynthesis in B. oryzae. The overexpression of the BMR1 gene led to more dark colonies than in the wild-type strain under dark conditions. Real-time PCR analysis showed that the BMR1 expression of the overexpression transformant was about 10-fold that of the wild type under dark conditions and of the expression of three melanin biosynthesis genes. These results indicated that BMR1 encodes the transcription factor of melanin biosynthesis genes in B. oryzae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.