Carbon monoxide (CO) provides protection against oxidative stress via anti-inflammatory and cytoprotective actions. In this study, we tested the hypothesis that a low concentration of exogenous (inhaled) CO would protect transplanted lung grafts from cold ischemia-reperfusion injury via a mechanism involving the mitogen-activated protein kinase (MAPK) signaling pathway. Lewis rats underwent orthotopic syngeneic or allogeneic left lung transplantation with 6 h of cold static preservation. Exposure of donors and recipients (1 h before and then continuously post-transplant) to 250 ppm CO resulted in significant improvement in gas exchange, reduced leukocyte sequestration, preservation of parenchymal and endothelial cell ultrastructure and reduced inflammation compared to animals exposed to air. The beneficial effects of CO were associated with p38 MAPK phosphorylation and were significantly prevented by treatment with a p38 MAPK inhibitor, suggesting that CO's efficacy is at least partially mediated by activation of p38 MAPK. Furthermore, CO markedly suppressed inflammatory events in the contralateral naïve lung. This study demonstrates that perioperative exposure of donors and recipients to CO at a low concentration can impart potent anti-inflammatory and cytoprotective effects in a clinically relevant model of lung transplantation and support further evaluation for potential clinical use.
Background TLR4 signaling mediates early inflammation after cold I/R. We hypothesized that the TLR4 co-receptor CD14, the intracellular adaptor proteins MyD88 and TRIF would be required for cold I/R induced inflammation. HMGB1 is a putative endogenous activator of TLR4. Therefore, we also assessed the contribution of HMGB1 in cold I/R induced inflammation. Methods Syngeneic heart transplants were performed in mice deficient in CD14, MyD88, TRIF, or wild-type mice. In other experiments, anti-HMGB1 neutralizing antibody or control IgG was administered at reperfusion. Donor hearts were subjected to 2 hours of cold ischemia and retrieved after 3 hours of reperfusion. Results After cold I/R, grafts revealed striking translocation of HMGB1 out of the nucleus in cardiac myocytes. Administration of an anti-HMGB1 neutralizing antibody resulted in reduced systemic IL-6 and TNFα and ICAM-1 mRNA levels (p≤0.05). Compared to controls, CD14KO mice exhibited significantly lower (p≤0.05) systemic IL-6 and JE/MCP-1 levels after cold I/R. Intra-graft TNFα and IL-1β mRNA levels were also significantly lower (p≤0.05) in CD14KO grafts. MyD88KO mice exhibited significantly lower (p≤0.05) systemic IL-6 levels compared to control mice after cold I/R. Intra-graft TNFα, IL-6, and ICAM1 mRNA levels were also significantly lower (p≤0.05) in MyD88KO grafts. Significantly lower levels (p≤0.05) of serum IL-6, MCP-1 as well as intragraft TNFα, IL-6, IL-1β, and ICAM1 were observed after cold I/R in TRIF deficient animals compared to controls. Conclusions CD14, MyD88, TRIF, and HMGB1 contribute to the inflammatory response that occurs after cold I/R. These results provide insight into the mechanisms of TLR4-mediated inflammation after cold I/R.
Renal ischemia/reperfusion injury is a major complication of kidney transplantation. We tested if ex vivo delivery of carbon monoxide (CO) to the kidney would ameliorate the renal injury of cold storage that can complicate renal transplantation. Orthotopic syngeneic kidney transplantation was performed in Lewis rats following 24 h of cold preservation in University of Wisconsin solution equilibrated without or with CO (soluble CO levels about 40 microM). Ischemia/reperfusion injury in control grafts resulted in an early upregulation of inflammatory mediator mRNAs and progressive deterioration of graft function. In contrast, the grafts preserved with CO had significantly less oxidative injury and this was associated with improved recipient survival compared to the control group. Renal injury in the control group showed considerable degradation of cytochrome P450 heme proteins, active heme metabolism and increased detrimental intracellular free heme levels. Kidney grafts preserved in CO-equilibrated solution maintained their cytochrome P450 protein levels, had normal intracellular heme levels and had less lipid peroxidation. Our results show that CO-mediated suppression of injurious heme-derived redox reactions offers protection of kidney grafts from cold ischemia/reperfusion injury.
Carbon monoxide (CO), a byproduct of heme catalysis, was shown to have potent cytoprotective and antiinflammatory effects. In vivo recipient CO inhalation at low concentrations prevented ischemia/reperfusion (I/R) injury associated with small intestinal transplantation (SITx). This study examined whether ex vivo delivery of CO in University of Wisconsin (UW) solution could ameliorate intestinal I/R injury. Orthotopic syngenic SITx was performed in Lewis rats after 6 h cold preservation in control UW or UW that was bubbled with CO gas (0.1-5%) (CO-UW). Recipient survival with intestinal grafts preserved in 5%, but not 0.1%, CO-UW improved to 86.7% (13/15) from 53% (9/17) with control UW. At 3 h after SITx, grafts stored in 5% CO-UW showed improved intestinal barrier function, less mucosal denudation and reduced inflammatory mediator upregulation compared to those in control UW. Preservation in CO-UW associated with reduced vascular resistance (end preservation), increased graft cyclic guanosine monophosphate levels (1 h), and improved graft blood flow (1 h). Protective effects of CO-UW were reversed by ODQ, an inhibitor of soluble guanylyl cyclase. In vitro culture experiment also showed better preservation of vascular endothelial cells with CO-UW. The study suggests that ex vivo CO delivery into UW solution would be a simple and innovative therapeutic strategy to prevent transplant-induced I/R injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.