The in vitro and in vivo antifungal activities of T-2307, a novel arylamidine, were evaluated and compared with those of fluconazole, voriconazole, micafungin, and amphotericin B. T-2307 exhibited broad-spectrum activity against clinically significant pathogens, including Candida species (MIC range, 0.00025 to 0.0078 g/ml), Cryptococcus neoformans (MIC range, 0.0039 to 0.0625 g/ml), and Aspergillus species (MIC range, 0.0156 to 4 g/ml). Furthermore, T-2307 exhibited potent activity against fluconazole-resistant and fluconazole-susceptible-dose-dependent Candida albicans strains as well as against azole-susceptible strains. T-2307 exhibited fungicidal activity against some Candida and Aspergillus species and against Cryptococcus neoformans. In mouse models of disseminated candidiasis, cryptococcosis, and aspergillosis, the 50% effective doses of T-2307 were 0.00755, 0.117, and 0.391 mg ⅐ kg ؊1 ⅐ dose ؊1 , respectively. This agent was considerably more active than micafungin and amphotericin B against candidiasis and than amphotericin B against cryptococcosis, and its activity was comparable to the activities of micafungin and amphotericin B against aspergillosis. The results of preclinical in vitro and in vivo evaluations performed thus far indicate that T-2307 could represent a potent injectable agent for the treatment of candidiasis, cryptococcosis, and aspergillosis.
The in vitro and in vivo activity of T-3912, a novel non-fluorinated topical quinolone, was compared with that of nadifloxacin, ofloxacin, levofloxacin, clindamycin, erythromycin and gentamicin. The in vitro activity of T-3912 against methicillin-susceptible Staphylococcus aureus, ofloxacin-resistant and methicillin-resistant S. aureus, Staphylococcus epidermidis, ofloxacin-resistant S. epidermidis, penicillin-resistant Streptococcus pneumoniae and Propionibacterium acnes was four-fold to 16 000-fold greater than that of other agents at the MIC90 for the clinical isolates. The activity of T-3912 was not influenced by grlA mutation in S. aureus, and the degree of MIC increase of T-3912 for grlA-gyrA double and triple mutants was lowest among the quinolones tested (nadifloxacin, levofloxacin and ofloxacin). The inhibitory activity of T-3912 was compared with other quinolones for DNA gyrase and topoisomerase IV of S. aureus SA113. T-3912 showed the greatest inhibitory activity for both enzymes among the quinolones tested. The isolation frequency of spontaneous mutants resistant to T-3912 was < 1.7 x 10(-9) and < 2.0 x 10(-9) for S. aureus SA113 and P. acnes JCM 6425, respectively. Furthermore, resistance to T-3912 could not be clearly detected in the 28th transfer by the serial passage method. T-3912 exhibited more potent bactericidal activity against S. aureus and P. acnes than nadifloxacin and clindamycin in a short time period. T-3912 in a 1% gel formulation showed good therapeutic activity against a burn infection model caused by S. aureus SA113, P. acnes JCM6425 and multidrug-resistant S. aureus F-2161. These results indicate that T-3912 is potentially a useful quinolone for the treatment of skin and soft-tissue infections and that its potent bactericidal activity might be able to shorten the treatment period.
T-2307, an arylamidine compound, has been previously reported to have broad-spectrum in vitro and in vivo antifungal activities against clinically significant pathogens, including Candida species, Cryptococcus neoformans, and Aspergillus species, and is now undergoing clinical trials. Here we investigated the mechanism of action of T-2307 using yeast cells and mitochondria isolated from yeast and rat liver. Nonfermentative growth of Candida albicans and Saccharomyces cerevisiae in glycerol medium, in which yeasts relied on mitochondrial respiratory function, was inhibited at 0.001 to 0.002 g/ml (0.002 to 0.004 M) of T-2307. However, fermentative growth in dextrose medium was not inhibited by T-2307. Microscopic examination using Mitotracker fluorescent dye, a cell-permeant mitochondrion-specific probe, demonstrated that T-2307 impaired the mitochondrial function of C. albicans and S. cerevisiae at concentrations near the MIC in glycerol medium. T-2307 collapsed the mitochondrial membrane potential in mitochondria isolated from S. cerevisiae at 20 M. On the other hand, in isolated rat liver mitochondria, T-2307 did not have any effect on the mitochondrial membrane potential at 10 mM. Moreover, T-2307 had little inhibitory and stimulatory effect on mitochondrial respiration in rat liver mitochondria. In conclusion, T-2307 selectively disrupted yeast mitochondrial function, and it was also demonstrated that the fungal mitochondrion is an attractive antifungal target.
Our results suggest that decreased bactericidal activity, or the in vitro PAE of carbapenems and fluoroquinolones, is related to the reduced in vivo protective effect against infection caused by high inoculum with S. aureus or P. aeruginosa.
The in vitro and in vivo activities of T-3811ME, a novel des-F(6)-quinolone, were evaluated in comparison with those of some fluoroquinolones, including a newly developed one, trovafloxacin. T-3811, a free base of T-3811ME, showed a wide range of antimicrobial spectra, including activities against Chlamydia trachomatis, Mycoplasma pneumoniae, andMycobacterium tuberculosis. In particular, T-3811 exhibited potent activity against various gram-positive cocci, with MICs at which 90% of the isolates are inhibited (MIC90s) of 0.025 to 6.25 μg/ml. T-3811 was the most active agent against methicillin-resistant Staphylococcus aureus and streptococci, including penicillin-resistant Streptococcus pneumoniae (PRSP). T-3811 also showed potent activity against quinolone-resistant gram-positive cocci with GyrA and ParC (GrlA) mutations. The activity of T-3811 against members of the familyEnterobacteriaceae and nonfermentative gram-negative rods was comparable to that of trovafloxacin. In common with other fluoroquinolones, T-3811 was highly active against Haemophilus influenzae, Moraxella catarrhalis, andLegionella sp., with MIC90s of 0.0125 to 0.1 μg/ml. T-3811 showed a potent activity against anaerobic bacteria, such as Bacteroides fragilis and Clostridium difficile. T-3811 was the most active agent against C. trachomatis (MIC, 0.008 μg/ml) and M. pneumoniae(MIC90, 0.0313 μg/ml). The activity of T-3811 againstM. tuberculosis (MIC90, 0.0625 μg/ml) was potent and superior to that of trovafloxacin. In experimental systemic infection with a GrlA mutant of S. aureus and experimental pneumonia with PRSP in mice, T-3811ME showed excellent therapeutic efficacy in oral and subcutaneous administrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.