Background:Clinical outcomes following nerve injury repair can be inadequate. Pulsed-current electrical stimulation (ES) is a therapeutic method that facilitates functional recovery by accelerating axon regeneration. However, current clinical ES protocols involve the application of ES for 60 minutes during surgery, which can increase operative complexity and time. Shorter ES protocols could be a strategy to facilitate broader clinical adoption. The purpose of the present study was to determine if a 10-minute ES protocol could improve outcomes.Methods:C57BL/6J mice were randomized to 3 groups: no ES, 10 minutes of ES, and 60 minutes of ES. In all groups, the sciatic nerve was transected and repaired, and, in the latter 2 groups, ES was applied after repair. Postoperatively, changes to gene expression from dorsal root ganglia were measured after 24 hours. The number of motoneurons regenerating axons was determined by retrograde labeling at 7 days. Histomorphological analyses of the nerve were performed at 14 days. Function was evaluated serially with use of behavioral tests up to 56 days postoperatively, and relative muscle weight was evaluated.Results:Compared with the no-ES group, both ES groups demonstrated increased regeneration-associated gene expression within dorsal root ganglia. The 10-minute and 60-minute ES groups demonstrated accelerated axon regeneration compared with the no-ES group based on increased numbers of labeled motoneurons regenerating axons (mean difference, 202.0 [95% confidence interval (CI), 17.5 to 386.5] and 219.4 [95% CI, 34.9 to 403.9], respectively) and myelinated axon counts (mean difference, 559.3 [95% CI, 241.1 to 877.5] and 339.4 [95% CI, 21.2 to 657.6], respectively). The 10-minute and 60-minute ES groups had improved behavioral recovery, including on grid-walking analysis, compared with the no-ES group (mean difference, 11.9% [95% CI, 3.8% to 20.0%] and 10.9% [95% CI, 2.9% to 19.0%], respectively). There was no difference between the ES groups in measured outcomes.Conclusions:A 10-minute ES protocol accelerated axon regeneration and facilitated functional recovery.Clinical Relevance:The brief (10-minute) ES protocol provided similar benefits to the 60-minute protocol in an acute sciatic nerve transection/repair mice model and merits further studies.
Background: For peripheral nerve defects, autografting is considered the therapeutic gold-standard treatment. However, this procedure leads to donor-site morbidity. While various artificial conduits have been recently developed, treatment outcome has been demonstrated to be poorer than that with autograft. In our previous study using a rat sciatic nerve crush injury model, we demonstrated that the delivery of electrospun nanofiber sheets incorporating methylcobalamin (MeCbl sheet) to the local site of a peripheral nerve injury promoted peripheral nerve regeneration. In this study, we examined the effects of combination therapy using an MeCbl sheet and a polyglycolic acid tube filled with collagen sponge (PGA-c) in a rat model of a 10-mm sciatic nerve defect. Methods: The rats were divided into 4 groups: (1) sham group (n = 10); (2) PGA-c group (n = 9), in which the gap was bridged using a PGA-c; (3) PGA-c/Sheet group (n = 8), in which the gap was bridged using a PGA-c wrapped in an MeCbl sheet; and (4) autograft group (n = 10), in which the gap was bridged using a reversed autograft. Motor and sensory function were evaluated, electrophysiological analysis was performed, and histomorphological findings were analyzed at 12 weeks postoperatively. Results: Compared with the PGA-c group, the PGA-c/Sheet group demonstrated significant improvements in the paw-withdrawal threshold expressed as a ratio relative to the contralateral side (mean difference [MD], −1.51; 95% confidence interval [CI], −2.64 to −0.38), terminal latency (MD, −0.86 ms; 95% CI, −1.56 to −0.16 ms), myelinated axon area (MD, 4.97%; 95% CI, 0.14% to 9.80%), proportion of myelinated axons (MD, 8.453%; 95% CI, 0.001% to 16.905%), and g-ratio (MD, −0.018; 95% CI, −0.035 to −0.001). No significant improvements were observed regarding motor function, electrophysiological findings with the exception of terminal latency, and axon numbers. Conclusions: An MeCbl sheet in combination with a PGA-c significantly accelerated recovery with respect to sensory function, electrophysiology, and histomorphometry. Clinical Relevance: An MeCbl sheet may represent an effective therapeutic strategy for promoting regeneration across a nerve gap bridged with an artificial conduit.
Neurotropin® (NTP), a non-protein extract of inflamed rabbit skin inoculated with vaccinia virus, is clinically used for the treatment of neuropathic pain in Japan and China, although its effect on peripheral nerve regeneration remains to be elucidated. The purpose of this study was to investigate the effects of NTP on Schwann cells (SCs) in vitro and in vivo, which play an important role in peripheral nerve regeneration. In SCs, NTP upregulated protein kinase B (AKT) activity and Krox20 and downregulated extracellular signal-regulated kinase1/2 activity under both growth and differentiation conditions, enhanced the expression of myelin basic protein and protein zero under the differentiation condition. In a co-culture of dorsal root ganglion neurons and SCs, NTP accelerated myelination of SCs. To further investigate the influence of NTP on SCs in vivo, lysophosphatidylcholine was injected into the rat sciatic nerve, leading to the focal demyelination. After demyelination, NTP was administered systemically with an osmotic pump for one week. NTP improved the ratio of myelinated axons and motor, sensory, and electrophysiological function. These findings reveal novel effects of NTP on SCs differentiation in vitro and in vivo, and indicate NTP as a promising treatment option for peripheral nerve injuries and demyelinating diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.