The pacemaker cells of the heart initiate the heartbeat, sustain the circulation, and dictate the rate and rhythm of cardiac contraction. Circulatory collapse ensues when these specialized cells are damaged by disease, a situation that currently necessitates the implantation of an electronic pacemaker. Here we report the use of viral gene transfer to convert quiescent heart-muscle cells into pacemaker cells, and the successful generation of spontaneous, rhythmic electrical activity in the ventricle in vivo. Our results indicate that genetically engineered pacemakers could be developed as a possible alternative to implantable electronic devices.
Objectives
We examined the sodium-iodide symporter (NIS) which promotes in vivo cellular uptake of 99mTc or 124I, as a reporter gene for cell tracking by SPECT or PET imaging.
Background
Stem cells offer the promise of cardiac repair. Stem cell labeling is a prerequisite to tracking cell fate in vivo.
Methods
The human NIS cDNA was transduced into rat cardiac-derived stem cells (rCDCs) using lentiviral vectors. Rats were injected intra-myocardially with up to 4 million NIS+-rCDCs immediately following LAD ligation. Dual isotope SPECT (or PET) imaging was performed, using 99mTc (or 124I) for cell detection and 201Tl (or 13NH3) for myocardial delineation. In a subset of animals, high resolution ex vivo SPECT scans of explanted hearts were obtained to confirm that in vivo signals were derived from the cell injection site.
Results
NIS expression in rCDCs did not affect cell viability and proliferation. NIS activity was verified in isolated transduced cells by measuring 99mTc uptake. NIS+ rCDCs were visualized in vivo as regions of 99mTc or 124I uptake within a perfusion deficit in the SPECT and PET images, respectively. Cells could be visualized by SPECT up to day 6 post-injection. Ex vivo SPECT confirmed that in vivo
99mTc signals were localized to the cell injection sites.
Conclusion
Ectopic NIS expression allows non invasive in vivo stem cell tracking in the myocardium, using either SPECT or PET. The general approach shows significant promise in tracking the fate of transplanted cells participating in cardiac regeneration, given its ability to observe living cells using clinically-applicable imaging modalities.
The adult heart contains reservoirs of progenitor cells that express embryonic and stem cell-related antigens. While these antigenically-purified cells are promising candidates for autologous cell therapy, clinical application is hampered by their limited abundance and tedious isolation methods. Methods that involve an intermediate cardiosphere-forming step have proven successful and are being tested clinically, but it is unclear whether the cardiosphere step is necessary. Accordingly, we investigated the molecular profile and functional benefit of cells that spontaneously emigrate from cardiac tissue in primary culture. Adult Wistar-Kyoto rat hearts were minced, digested and cultured as separate anatomical regions. Loosely-adherent cells that surround the plated tissue were harvested weekly for a total of five harvests. Genetic lineage tracing demonstrated that a small proportion of the direct outgrowth from cardiac samples originates from myocardial cells. This outgrowth contains sub-populations of cells expressing embryonic (SSEA-1) and stem cell-related antigens (c-Kit, abcg2) that varied with time in culture but not with the cardiac chamber of origin. This direct outgrowth, and its expanded progeny, underwent marked in vitro angiogenic/cardiogenic differentiation and cytokine secretion (IGF-1, VGEF). In vivo effects included long-term functional benefits as gauged by MRI following cell injection in a rat model of myocardial infarction. Outgrowth cells afforded equivalent functional benefits to cardiosphere-derived cells, which require more processing steps to manufacture. These results provide the basis for a simplified and efficient process to generate autologous cardiac progenitor cells (and mesenchymal supporting cells) to augment clinically-relevant approaches for myocardial repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.