Social networks play important roles in the Semantic Web: knowledge management, information retrieval, ubiquitous computing, and so on. We propose a social network extraction system called POLY-PHONET, which employs several advanced techniques to extract relations of persons, detect groups of persons, and obtain keywords for a person. Search engines, especially Google, are used to measure co-occurrence of information and obtain Web documents.Several studies have used search engines to extract social networks from the Web, but our research advances the following points: First, we reduce the related methods into simple pseudocodes using Google so that we can build up integrated systems. Second, we develop several new algorithms for social networking mining such as those to classify relations into categories, to make extraction scalable, and to obtain and utilize person-to-word relations. Third, every module is implemented in POLYPHONET, which has been used at four academic conferences, each with more than 500 participants. We overview that system. Finally, a novel architecture called Super Social Network Mining is proposed; it utilizes simple modules using Google and is characterized by scalability and Relate-Identify processes: Identification of each entity and extraction of relations are repeated to obtain a more precise social network.
The need for automatic document summarization that can be used for practical applications is increasing rapidly. In this paper, we propose a general framework for summarization that extracts sentences from a document using externally related information. Our work is aimed at single document summarization using small amounts of reference summaries. In particular, we address document summarization in the framework of multitask learning using curriculum learning for sentence extraction and document classification. The proposed framework enables us to obtain better feature representations to extract sentences from documents. We evaluate our proposed summarization method on two datasets: financial report and news corpus. Experimental results demonstrate that our summarizers achieve performance that is comparable to stateof-the-art systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.