Numerical convergence of a Telegraph Predator-Prey system is studied. This partial differential equation (PDE) system can describe various biological systems with reactive, diffusive, and delay effects. Initially, the PDE system was discretized by the Finite Differences method. Then, a system of equations in a time-explicit form and in a space-implicit form was obtained. The consistency of the Telegraph Predator-Prey system discretization was verified. Von Neumann stability conditions were calculated for a Predator-Prey system with reactive terms and for a Delayed Telegraph system. On the other hand, for our Telegraph Predator-Prey system, it was not possible to obtain the von Neumann conditions analytically. In this context, numerical experiments were carried out and it was verified that the mesh refinement and the model parameters, reactive constants, diffusion coefficients and delay constants, determine the stability/instability conditions of the discretized equations. The results of numerical experiments were presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.