SUMMARY Many genes that affect replicative lifespan (RLS) in the budding yeast Saccharomyces cerevisiae also affect aging in other organisms such as C. elegans and M. musculus. We performed a systematic analysis of yeast RLS in a set of 4,698 viable single-gene deletion strains. Multiple functional gene clusters were identified, and full genome-to-genome comparison demonstrated a significant conservation in longevity pathways between yeast and C. elegans. Among the mechanisms of aging identified, deletion of tRNA exporter LOS1 robustly extended lifespan. Dietary restriction (DR) and inhibition of mechanistic Target of Rapamycin (mTOR) exclude Los1 from the nucleus in a Rad53-dependent manner. Moreover, lifespan extension from deletion of LOS1 is non-additive with DR or mTOR inhibition, and results in Gcn4 transcription factor activation. Thus, the DNA damage response and mTOR converge on Los1-mediated nuclear tRNA export to regulate Gcn4 activity and aging.
Once a backwater in medical sciences, aging research has emerged and now threatens to take the forefront. This dramatic change of stature is driven from three major events. First and foremost, the world is rapidly getting old. Never before have we lived in a demographic environment like today and the trends will continue such that 20% percent of the global population of 9 billion will be over the age of 60 by 2050. Given current trends of sharply increasing chronic disease incidence, economic disaster from the impending silver tsunami may be ahead. A second major driver on the rise is the dramatic progress that aging research has made using invertebrate models such as worms, flies and yeast. Genetic approaches using these organisms have led to hundreds of aging genes and, perhaps surprisingly, strong evidence of evolutionary conservation among longevity pathways between disparate species, including mammals. Current studies suggest that this conservation may extend to humans. Finally, small molecules such as rapamycin and resveratrol have been identified that slow aging in model organisms, although only rapamycin to date impacts longevity in mice. The potential now exists to delay human aging, whether it is through known classes of small molecules or a plethora of emerging ones. But how can a drug that slows aging become approved and make it to market when aging is not defined as a disease. Here, we discuss the strategies to translate discoveries from aging research into drugs. Will aging research lead to novel therapies toward chronic disease, prevention of disease or be targeted directly at extending lifespan?
Many components of cellular signaling pathways are sensitive to regulation by oxidation and reduction. Previously, we described the inactivation of cAMP-dependent protein kinase (PKA) by direct oxidation of a reactive cysteine in the activation loop of the kinase. In the present study, we demonstrate that in HeLa cells PKA activity follows a biphasic response to thiol oxidation. Under mild oxidizing conditions, or short exposure to oxidants, forskolin-stimulated PKA activity is enhanced. This enhancement was blocked by sulfhydryl reducing agents, demonstrating a reversible mode of activation. In contrast, forskolin-stimulated PKA activity is inhibited by more severe oxidizing conditions. Mild oxidation enhanced PKA activity stimulated by forskolin, isoproterenol, or the cell-permeable analog, 8-bromo-cAMP. When cells were lysed in the presence of serine/threonine phosphatase inhibitor, NaF, the PKA-enhancing effect of oxidation was blunted. These results suggest oxidation of a PKA-counteracting phosphatase may be inhibited, thus enhancing the apparent kinase activity. Using an in vivo PKA activity reporter, we demonstrated that mild oxidation does indeed prolong the PKA signal induced by isoproterenol by inhibiting counteracting phosphatase activity. The results of this study demonstrate in live cells a unique synergistic mechanism whereby the PKA signaling pathway is enhanced in an apparent biphasic manner. cAMP-dependent protein kinase (PKA or cAPK)2 is a ubiquitously expressed kinase, critical for diverse cellular functions (1). Regulation of the kinase is primarily achieved by the production and degradation of the second messenger cAMP in response to extracellular stimuli, including hormones and neurotransmitters (2). Binding of these ligands to G s -coupled receptors initiates the activation of adenylate cyclase and production of cAMP from ATP. PKA normally exists as an inactive heterotetramer composed of two regulatory subunits and two catalytic subunits (3-5). Binding of cAMP to the regulatory subunits induces the release of the active catalytic subunit, initiating the phosphorylation of numerous downstream substrates, including ion channels at the plasma membrane and sarcoplasmic reticulum (1, 6), the transcription factor cAMPresponse element-binding protein in the nucleus (1, 7-9), and phosphorylase kinase in the cytosol (1, 10). The PKA signal persists until cAMP is hydrolyzed by phosphodiesterases (2) or the free catalytic subunit is inhibited by the heat-stable inhibitor PKI (11). Upon inactivation of PKA by the removal of cAMP, the phosphorylated substrate will persist until reversed by phosphatase activity.Reactive oxygen species are capable of modulating the response of numerous cell signaling pathways (12-15), including that of PKA (16 -21). Oxidants can potentially regulate the PKA pathway at multiple points, including the production and degradation of cAMP, and the phosphorylation and dephosphorylation of substrates. At the level of cAMP production, biochemical evidence has demonstrated that hy...
The mechanism of PKAc-dependent NF-κB activation and subsequent translocation into the nucleus is not well defined. Previously, we showed that A kinase interacting protein 1 (AKIP1) was important for binding and retaining PKAc in the nucleus. Since then, other groups have demonstrated that AKIP1 binds the p65 subunit of NF-κB and regulates its transcriptional activity through the phosphorylation at Ser 276 by PKAc. However, little is known about the formation and activation of the PKAc/AKIP1/p65 complex and the rate at which it enters the nucleus. Initially, we found that the AKIP1 isoform (AKIP 1A) simultaneously binds PKAc and p65 in resting and serum starved cells. Using peptide arrays, we refined the region of AKIP 1A binding on PKAc and mapped the non-overlapping regions on AKIP 1A where PKAc and p65 bind. A peptide to the amino-terminus of PKAc (CAT 1-29) was generated to specifically disrupt the interaction between AKIP 1A and PKAc to study nuclear import of the complex. The rate of p65 nuclear translocation was monitored in the presence or absence of overexpressed AKIP 1A and/or (CAT 1-29). Enhanced nuclear translocation of p65 was observed in the presence of overexpressed AKIP1 and/or CAT 1-29 in cells stimulated with TNFα, and this correlated with decreased phosphorylation of serine 276. To determine whether PKAc phosphorylation of p65 in the cytosol regulated nuclear translocation, serine 276 was mutated to alanine or aspartic acid. Accelerated nuclear accumulation of p65 was observed in the alanine mutant, while the aspartic acid mutation displayed slowed nuclear translocation kinetics. In addition, enhanced nuclear translocation of p65 was observed when PKAc was knocked-down by siRNA. Taken together, these results suggest that AKIP 1A acts to scaffold PKAc to NF-κB in the cytosol by protecting the phosphorylation site and thereby regulating the rate of nuclear translocation of p65.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.