Cyclic di-GMP (c-di-GMP) is a bacterial second messenger produced by GGDEF domain-containing proteins. The genome of Ehrlichia chaffeensis, an obligatory intracellular bacterium that causes human monocytic ehrlichiosis, encodes a single protein that contains a GGDEF domain, called PleD. In this study, we investigated the effects of c-di-GMP signaling on E. chaffeensis infection of the human monocytic cell line THP-1. Recombinant E. chaffeensis PleD showed diguanylate cyclase activity as it generated c-di-GMP in vitro. Because c-di-GMP is not cell permeable, the c-di-GMP hydrophobic analog 2-O-di(tert-butyldimethylsilyl)-c-di-GMP (CDGA) was used to examine intracellular c-di-GMP signaling. CDGA activity was first tested with Salmonella enterica serovar Typhimurium. CDGA inhibited well-defined c-di-GMP-regulated phenomena, including cellulose synthesis, clumping, and upregulation of csgD and adrA mRNA, indicating that CDGA acts as an antagonist in c-di-GMP signaling. [32 P]c-di-GMP bound several E. chaffeensis native proteins and two E. chaffeensis recombinant I-site proteins, and this binding was blocked by CDGA. Although pretreatment of E. chaffeensis with CDGA did not reduce bacterial binding to THP-1 cells, bacterial internalization was reduced. CDGA facilitated protease-dependent degradation of particular, but not all, bacterial surface-exposed proteins, including TRP120, which is associated with bacterial internalization. Indeed, the serine protease HtrA was detected on the surface of E. chaffeensis, and TRP120 was degraded by treatment of E. chaffeensis with recombinant E. chaffeensis HtrA. Furthermore, anti-HtrA inhibited CDGA-induced TRP120 degradation. Our results suggest that E. chaffeensis invasion is regulated by c-di-GMP signaling, which stabilizes some bacterial surface-exposed proteins against proteases.Ehrlichia chaffeensis causes the potentially fatal infectious disease human monocytic ehrlichiosis. This disease is one of the most prevalent life-threatening tick-borne zoonoses in the United States, but it is less frequently reported to occur in other parts of the world (13, 42). E. chaffeensis is a Gramnegative bacterium that belongs to the order Rickettsiales in the Alphaproteobacteria. To survive, E. chaffeensis must infect eukaryotic host cells, as it lacks most of the genes for the biosynthesis of amino acids and the associated intermediary metabolism (47). E. chaffeensis invades human monocytes and macrophages and replicates in membrane-bound inclusions by inhibiting oxidative and nonoxidative microbicidal mechanisms in these cells (48).Cyclic di-GMP (c-di-GMP) is a bacterial second messenger produced by the GGDEF domain-containing diguanylate cyclase (DGC). c-di-GMP is degraded by EAL or HD-GYP domain-containing c-di-GMP-specific phosphodiesterases (22,29,52,53,55,63). Because GGDEF domain-containing proteins are found in most sequenced bacterial genomes, c-di-GMP signaling is considered to be ubiquitous (15, 28). c-di-GMP inversely regulates the planktonic traits (motility) and communal or...
Neutrophil extracellular traps (NETs) are extracellular chromatin fibers adorned with antimicrobial proteins, such as myeloperoxidase (MPO), which are extruded from activated neutrophils. NETosis is the metamorphosis of neutrophils with NET formation that follows decondensation of DNA and rupture of the plasma membrane. Although NETs play important roles in innate immunity, excessive formation of NETs can be harmful to the hosts. Until now, various methods for evaluation of NETs have been reported. Although each has a virtue, the gold standard has not been established. Here we demonstrate a simple, objective, and quantitative method to detect NETs using flow cytometry. This method uses a plasma membrane‐impermeable DNA‐binding dye, SYTOX Green. SYTOX Green‐positive cells were detected in human peripheral polymorphonuclear cells exposed to a NET inducer, phorbol 12‐myristate 13‐acetate (PMA). The number of SYTOX Green‐positive cells was increased depending on the exposure duration and concentrations of PMA. Furthermore, co‐localization of MPO and plasma membrane‐appendant DNA of SYTOX Green‐positive cells was demonstrated. Moreover, a NET inhibitor, diphenylene iodonium, could significantly reduce the number of SYTOX Green‐positive cells induced by PMA. The collective evidence suggests that SYTOX Green‐positive cells include neutrophils that formed NETs. The established method could detect neutrophils that underwent NETosis but not early apoptosis with equivalence in quantification to another well‐used image analysis, which is based on fluorescent staining. Additionally, NETs that were formed in vivo were also detectable by this method. It is conceivable that the established method will bring us better understanding of the relation between NETosis and human diseases. © 2017 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of ISAC.
Parachlamydia acanthamoebae, belonging to the order Chlamydiales, is an obligately intracellular bacterium that infects free-living amoebae and is a potential human pathogen. However, no method exists to accurately quantify viable bacterial numbers. We present a novel quantification method for P. acanthamoebae based on coculture with amoebae. P. acanthamoebae was cultured either with Acanthamoeba spp. or with mammalian epithelial HEp-2 or Vero cells. The infection rate of P. acanthamoebae (amoeba-infectious dose [AID]) was determined by DAPI (4,6-diamidino-2-phenylindole) staining and was confirmed by fluorescent in situ hybridization. AIDs were plotted as logistic sigmoid dilution curves, and P. acanthamoebae numbers, defined as amoeba-infectious units (AIU), were calculated. During culture, amoeba numbers and viabilities did not change, and amoebae did not change from trophozoites to cysts. Eight amoeba strains showed similar levels of P. acanthamoebae growth, and bacterial numbers reached ca. 1,000-fold (10 9 AIU preculture) after 4 days. In contrast, no increase was observed for P. acanthamoebae in either mammalian cell line. However, aberrant structures in epithelial cells, implying possible persistent infection, were seen by transmission electron microscopy. Thus, our method could monitor numbers of P. acanthamoebae bacteria in host cells and may be useful for understanding chlamydiae present in the natural environment as human pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.