The mechanism of the critical heat flux (CHF) where the departure from nucleate boiling (DNB)-type boiling transition takes place has not been fully elucidated. In this paper, we examine the trigger mechanism of the CHF for saturated and subcooled pool boiling on vertical and inclined surfaces based on measurements of the liquid-vapor behaviors near heating surfaces by using a conductance probe. The angle of inclination was varied from 90 (vertical) to 170 (facing almost horizontally downwards). The probe signals and the void fraction distributions showed that a liquid layer remains beneath the vapor masses moving upward along the heating surface at high heat fluxes near the CHF. The thickness of the liquid layer was determined from the location where the probe signals corresponding to the vapor masses disappeared. The thickness of the liquid layer formed on the vertical surface increased with increasing degree of subcooling, which may be the cause of the increases in CHF with increasing degree of subcooling. The measurements of saturated boiling on the inclined surface confirmed that the orientation of the heating surface greatly affects the period it takes for vapor masses to pass, but it negligibly affects the liquid layer thickness. This suggests that the decrease in CHF with increasing angle of inclination is primarily caused by the lengthening of the duration of vapor mass passage.
The mechanism of the critical heat flux (CHF) where the departure from nucleate boiling (DNB)-type boiling transition takes place has not been fully elucidated. In this paper, we examine the trigger mechanism of the CHF for saturated and subcooled pool boiling on vertical and inclined surfaces based on measurements of the liquid-vapor behaviors near heating surfaces by using a conductance probe. The angle of inclination was varied from 90 (vertical) to 170 (facing almost horizontally downwards). The probe signals and the void fraction distributions showed that a liquid layer remains beneath the vapor masses moving upward along the heating surface at high heat fluxes near the CHF. The thickness of the liquid layer was determined from the location where the probe signals corresponding to the vapor masses disappeared. The thickness of the liquid layer formed on the vertical surface increased with increasing degree of subcooling, which may be the cause of the increases in CHF with increasing degree of subcooling. The measurements of saturated boiling on the inclined surface confirmed that the orientation of the heating surface greatly affects the period it takes for vapor masses to pass, but it negligibly affects the liquid layer thickness. This suggests that the decrease in CHF with increasing angle of inclination is primarily caused by the lengthening of the duration of vapor mass passage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.