Experimental and numerical investigations have been carried out to understand the effects of the inlet boundary layer (IBL) on the tip flow field including the aerodynamic performance in a transonic fan rotor. Both the steady and the unsteady phenomena in the tip flow field have been investigated for operating conditions near peak efficiency and near stall with the two types of tip IBL. In order 10 study these phenomena, high response pressure data with Kulite transducers and laser doppler velocimeter (LDV) data have been acquired around the tip region. Furthermore, three-dimensional Navier-Stokes numerical simulations have been compared with the measured results. The results indicate that the tip IBL significantly influences the spanwise distribution of pressure ratio around the tip region and the stall characteristics including the passage shock / tip leakage vortex interaction, the blockage generation, the wake structure, and the unsteadiness of the tip flow field. In particular, at a near stall condition for the thick IBL with high turbulence intensity level, the tip diffusion level is increased due to a larger blockage, which is generated downstream of a much stronger interaction region. These phenomena are a consequence of the low momentum fluid in the tip IBL, and significantly reduce the stall margin. Furthermore, the unsteadiness drastically increases around the interaction region and around the pressure surface where the blockage migrates. These unsteady phenomena are distinctive features near stall. Downstream of the rotor, the larger and more unsteady blockage is discharged from the pressure surface side, and complicates the three-dimensional rotor exit flow field around the tip region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.