Lysosomal-associated protein transmembrane-4 beta (LAPTM4B), a novel gene upregulated in hepatocellular carcinoma (HCC), was cloned using fluorescence differential display, RACE, and RT-PCR. It contains seven exons and encodes a 35-kDa protein with four putative transmembrane regions. Both the N-and C-termini of the protein are proline-rich, and may serve as potential ligands for the SH3 domain. Immunohistochemical analysis localized the protein predominantly to intracellular membranes. Northern blot showed that the LAPTM4B mRNAs were remarkably upregulated in HCC (87.3%) and correlated inversely with differentiation status. LAPTM4B was also overexpressed in many HCC-derived cell lines. It was also highly expressed in fetal livers and certain adult normal tissues including the heart, skeletal muscle, testis, and ovary. Promoter function assays showed a distinct difference in the gene's activities between BEL7402 and HLE cell lines, suggesting that the transcription factors responsible for regulation of the gene in the two cell lines are different, and that possible negative regulatory cis-elements may exist upstream of the promoter region. It was demonstrated that the N-terminus of LAPTM4B was essential for survival of the cells. Cells harboring the full-length LAPTM4B cDNA expression clone displayed a slightly increased efficiency in colony formation. These results suggest that LAPTM4B is a potential protooncogene, whose overexpression is involved in carcinogenesis and progression of HCC. In normal cells, it may also play important roles such as regulation of cell proliferation and survival.
Blockade of immune checkpoint pathways by programmed cell death protein 1 (PD-1) antibodies has demonstrated broad clinical efficacy against a variety of malignancies. Sintilimab, a highly selective, fully human monoclonal antibody (mAb), blocks the interaction of PD-1 and its ligands and has demonstrated clinical benefit in various clinical studies. Here, we evaluated the affinity of sintilimab to human PD-1 by surface plasmon resonance and mesoscale discovery and evaluated PD-1 receptor occupancy and anti-tumor efficacy of sintilimab in a humanized NOD/Shi-scid-IL2rgamma (null) (NOG) mouse model. We also assessed the receptor occupancy and immunogenicity of sintilimab from clinical studies in humans (9 patients with advanced solid tumor and 381 patients from 4 clinical studies, respectively). Sintilimab bound to human PD-1 with greater affinity than nivolumab (Opdivo®, MDX-1106) and pembrolizumab (Keytruda®, MK-3475). The high affinity of sintilimab is explained by its distinct structural binding mode to PD-1. The pharmacokinetic behavior of sintilimab did not show any significant differences compared to the other two anti-PD-1 mAbs. In the humanized NOG mouse model, sintilimab showed superior PD-1 occupancy on circulating T cells and a stronger anti-tumor effect against NCI-H292 tumors. The strong anti-tumor response correlated with increased interferon-γ-secreting, tumor-specific CD8+ T cells, but not with CD4+ Tregs in tumor tissue. Pharmacodynamics testing indicated a sustained mean occupancy of ≥95% of PD-1 molecules on circulating T cells in patients following sintilimab infusion, regardless of infusion dose. Sintilimab infusion was associated with 0.52% (2/381 patients) of anti-drug antibodies and 0.26% (1/381 patients) neutralizing antibodies. These data validate sintilimab as a novel, safe, and efficacious anti-PD-1 mAb for cancer immunotherapy.
There is growing evidence that common variants of the transforming growth factor-beta (TGF-beta) signaling pathway may modify breast cancer risk. In vitro studies have shown that some variants increase TGF-beta signaling, whereas others have an opposite effect. We tested the hypothesis that a combined genetic assessment of two well-characterized variants may predict breast cancer risk. Consecutive patients (n = 660) with breast cancer from the Memorial Sloan-Kettering Cancer Center (New York, NY) and healthy females (n = 880) from New York City were genotyped for the hypomorphic TGFBR1*6A allele and for the TGFB1 T29C variant that results in increased TGF-beta circulating levels. Cases and controls were of similar ethnicity and geographic location. Thirty percent of cases were identified as high or low TGF-beta signalers based on TGFB1 and TGFBR1 genotypes. There was a significantly higher proportion of high signalers (TGFBR1/TGFBR1 and TGFB1*CC) among controls (21.6%) than cases (15.7%; P = 0.003). The odds ratio [OR; 95% confidence interval (95% CI)] for individuals with the lowest expected TGF-beta signaling level (TGFB1*TT or TGFB1*TC and TGFBR1*6A) was 1.69 (1.08-2.66) when compared with individuals with the highest expected TGF-signaling levels. Breast cancer risk incurred by low signalers was most pronounced among women after age 50 years (OR, 2.05; 95% CI, 1.01-4.16). TGFBR1*6A was associated with a significantly increased risk for breast cancer (OR, 1.46; 95% CI, 1.04-2.06), but the TGFB1*CC genotype was not associated with any appreciable risk (OR, 0.89; 95% CI, 0.63-1.21). TGFBR1*6A effect was most pronounced among women diagnosed after age 50 years (OR, 2.20; 95% CI, 1.25-3.87). This is the first study assessing the TGF-beta signaling pathway through two common and functionally relevant TGFBR1 and TGFB1 variants. This approach may predict breast cancer risk in a large subset of the population.
Although several treatment options for radial head fractures are available, no clear solutions exist. In this study we therefore compare open reduction and internal fixation (ORIF) with bipolar radial head prosthesis replacement in treatment of radial head fractures of Mason type III. Cement stem and bipolar radial prosthesis were used to treat 12 fresh cases and two old cases of Mason type III radial head fracture. As a control group, another eight cases of radial head type III fracture were treated with ORIF with cannulated screws and Kirschner (K) wires. The 14 patients who received radial head prosthesis replacement were followed-up for 15.9 months (range 10-27 months). According to elbow functional evaluation criteria by Broberg and Morrey, we found excellent results in nine cases, good in four, and fair in one. Mean follow-up of the eight cases in the ORIF group was 14 months (range 10-21 months), with good results in one case, fair in four, and poor in three. The result was good or excellent in 92.9% of prosthesis replacement patients and in 12.5% of ORIF patients. This difference is statistically significant (P=0.0004; Fisher's exact test). We concluded that bipolar radial head prosthesis replacement is better than ORIF in treatment of Mason type III radial head fracture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.