Surface plasmon resonance of coinage metal nanoparticles is extensively exploited to promote catalytic reactions via harvesting solar energy. Previous efforts on elucidating the mechanisms of enhanced catalysis are devoted to hot electron-induced photothermal conversion and direct charge transfer to the adsorbed reactants. However, little attention is paid to roles of hot holes that are generated concomitantly with hot electrons. In this work, 13 nm spherical Au nanoparticles with small absorption cross-section are employed to catalyze a well-studied glucose oxidation reaction. Density functional theory calculation and X-ray absorption spectrum analysis reveal that hot holes energetically favor transferring catalytic intermediates to product molecules and then desorbing from the surface of plasmonic catalysts, resulting in the recovery of their catalytic activities. The studies shed new light on the use of the synergy of hot holes and hot electrons for plasmon-promoted catalysis.
Plasmon mediated photocatalysis provides a novel strategy for harvesting solar energy. Identification of rate determining step and its activation energy in plasmon mediated photocatalysis plays critical roles for understanding the contribution of hot carriers that facilitates rational designing catalysts with integrated high photo-chemical conversion efficiency and catalytic performance. However, it remains a challenge due to a lack of research tools with spatiotemporal resolution that capable of capturing intermediates. In this work, we used a single molecular fluorescence approach to investigate a localized surface plasmon resonance (LSPR) enhanced photocatalytic reaction with sub-turnover resolution. By introducing variable temperature as an independent parameter in plasmonic photocatalysis, the activation energies of tandem reaction steps, including intermediate generation, product generation and product dissociation, were clearly differentiated, and intermediates generation was found to be the rate-limiting step. Remarkably, the cause of plasmon enhanced catalysis performance was found to be its ability of lowering the activation energy of intermediates generation. This study gives new insight into the photo-chemical energy conversion pathways in plasmon enhanced photocatalysis and sheds light on designing high performance plasmonic catalysts. File list (2) download file view on ChemRxiv Main text-20191220.docx (2.01 MiB) download file view on ChemRxiv SI-20191220.docx (2.40 MiB)
The interactions between atoms of noble gases and π systems are generally considered as van der Waals interaction, which have not attracted attention yet. Herein, we present high-level ab initio calculations to show the unexpected noncovalent interaction between a covalently bonded noble gas atom and a delocalized aromatic π electron using XeO3⋅benzene as the prototype. The CCSD(T)/CBS reference data show its strength amounting to -10.2 kcal mol(-1), comparable to a typical H-bond or an anion-π interaction. The energy decomposition analysis reveals that the aerogen-π interaction is favored by the electrostatic interaction (27.7%), the induction (13.4%), and the dispersion (21.6%). This interaction may prompt us to consider the noncovalent chemistry of aerogen derivatives in the near future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.