Motivated by the recent LHC hints of a Higgs boson around 125 GeV, we assume a SM-like Higgs with the mass 123-127 GeV and study its implication in low energy SUSY by comparing the MSSM and NMSSM. We consider various experimental constraints at 2σ level (including the muon g − 2 and the dark matter relic density) and perform a comprehensive scan over the parameter space of each model. Then in the parameter space which is allowed by current experimental constraints and also predicts a SM-like Higgs in 123-127 GeV, we examine the properties of the sensitive parameters (like the top squark mass and the trilinear coupling A t ) and calculate the rates of the di-photon signal and the V V * (V = W, Z) signals at the LHC. Our typical findings are: (i) In the MSSM the top squark and A t must be large and thus incur some fine-tuning, which can be much ameliorated in the NMSSM; (ii) In the MSSM a light stau is needed to enhance the di-photon rate of the SM-like Higgs to exceed its SM prediction, while in the NMSSM the di-photon rate can be readily enhanced in several ways; (iii) In the MSSM the signal rates of pp → h → V V * at the LHC are never enhanced compared with their SM predictions, while in the NMSSM they may get enhanced significantly; (iv) A large part of the parameter space so far survived will be soon covered by the expected XENON100(2012) sensitivity (especially for the NMSSM).
Perfluorooctanoic acid (C(7)F(15)COOH, PFOA) has increasingly attracted worldwide concerns due to its global occurrence and resistance to most conventional treatment processes. Though TiO(2)-based photocatalysis is strong enough to decompose most organics, it is not effective for PFOA decomposition. We first find that indium oxide (In(2)O(3)) possesses significant activity for PFOA decomposition under UV irradiation, with the rate constant about 8.4 times higher than that by TiO(2). The major intermediates of PFOA were C(2)-C(7) shorter-chain perfluorocarboxylic acids, implying that the reaction proceeded in a stepwise manner. By using diffuse reflectance infrared Fourier transform spectroscopy, (19)F magic angle spinning nuclear magnetic resonance, and electron spin resonance, we demonstrate that the terminal carboxylate group of PFOA molecule tightly coordinates to the In(2)O(3) surface in a bidentate or bridging configuration, which is beneficial for PFOA to be directly decomposed by photogenerated holes of In(2)O(3) under UV irradiation, while PFOA coordinates to TiO(2) in a monodentate mode, and photogenerated holes of TiO(2) preferentially transform to hydroxyl radicals, which are inert to react with PFOA. PFOA decomposition in wastewater was inhibited by bicarbonate and other organic matters; however, their adverse impacts can be mostly avoided via pH adjustment and ozone addition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.