Reticulate speciation caused by interspecific hybridization is now recognized as an important mechanism in the creation of biological diversity. However, depicting the patterns of phylogenetic networks for lineages that have undergone interspecific gene flow is challenging. Here we sequenced 25 taxa representing natural diversity in the genus Actinidia with an average mapping depth of 26× on the reference genome to reconstruct their reticulate history. We found evidence, including significant gene tree discordance, cytonuclear conflicts, and changes in genome-wide heterozygosity across taxa, collectively supporting extensive reticulation in the genus. Furthermore, at least two separate parental species pairs were involved in the repeated origin of the hybrid lineages, in some of which a further phase of syngameon was triggered. On the basis of the elucidated hybridization relationships, we obtained a highly resolved backbone phylogeny consisting of taxa exhibiting no evidence of hybrid origin. The backbone taxa have distinct demographic histories and are the product of recent rounds of rapid radiations via sorting of ancestral variation under variable climatic and ecological conditions. Our results suggest a mode for consecutive plant diversification through two layers of radiations, consisting of the rapid evolution of backbone lineages and the formation of hybrid swarms derived from these lineages.
Most driving torques in serial industrial robots are used to overcome the weight of the robot. Although actuators account for a large proportion of the total mass of a robot, they have yet to become a positive factor that enables the robot to achieve gravity balance. This study presents a host–parasite structure to reconstruct the distribution of actuators and achieve gravity balance in robots. First, based on the characteristics of tree–rattan mechanisms, a method for calculating the degrees of freedom and a symbolic representation method for the distribution of branched chains are formulated for host–parasite mechanisms. Second, a configuration analysis and optimization method for host–parasite structure-based robots and a robot prototype are presented. Finally, four host–parasite mechanisms/robots (A, B, C, and D) are compared. The results are as follows. If more parasitic branched chains are added to the yz plane, the loads along axes 2 and 3 become more balanced, which significantly increases the stiffnesses of the mechanism in the y- and z-directions ( Ky and Kz, respectively). If the additional branched chains are closer to the site of maximum deformation, the stiffness of the mechanism in the z-direction ( Kz) increases more significantly. Of the four mechanisms, mechanism D has the best overall performance. The joint torques of mechanism D along axes 2 and 3 are lower than those of mechanism A by 99.78% and 99.18%, respectively. In addition, Kx, Ky, and Kz of mechanism D are 100.56%, 336.19%, and 385.02% of those of mechanism A, respectively. Moreover, the first-order natural frequency of mechanism D is 135.94% of that of mechanism A. Host–parasitic structure is conducive to improving the performance of industrial robots.
The stiffness distribution (SD) of robot has a great influence on the robot pose accuracy, but the calculation efficiency and accuracy of stiffness distribution are still low.This study presents a finite element fitting method with an extremely small number of computational cells. It was developed based on experimental results of robot stiffness. This method can be employed to establish single-and multi-source fitted SD (FSD) (S-FSD and M-FSD) models for host-parasite (H-P) robots. The computational efficiency and correctness of the FSD models were verified by case studies.The configurations of six evolutionary mechanisms of an H-P robot were subjected to an SD analysis. A comparison of the six configurations shows that adding parasitic branched chains can improve the SD of the H-P robot to varying degrees. In particular, the most notable improvement was for H-P mechanism. Specifically, by averaging the stiffness of all positions, the average-stiffnesses of H-P mechanism in the x-, y-, and z-directions were 104.10%, 1427.78%, and 1101.62% of those of the host mechanism, respectively. In the SD diagram, the mediumand high-stiffness regions of mechanism F are large and distributed in a banded pattern between the highest pose point and the furthest pose point, whereas its low-stiffness region is small and concentrated near the nearest pose point .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.