We propose to install a storage ring at an ISOL-type radioactive beam facility for the first time. Specifically, we intend to install the heavy-ion, low-energy ring TSR at the HIE-ISOLDE facility in CERN, Geneva. Such a facility will provide a capability for experiments with stored secondary beams that is unique in the world. The envisaged physics programme is rich and varied, spanning from investigations of nuclear groundstate properties and reaction studies of astrophysical relevance, to investigations with highly-charged ions and pure isomeric beams. The TSR can also be used to remove isobaric contaminants from stored ion beams and for systematic studies within the neutrino beam programme. In addition to experiments performed using beams recirculating within the ring, cooled beams can also be extracted and exploited by external spectrometers for high-precision measurements. The existing TSR, which is presently in operation at the Max-Planck Institute for Nuclear Physics in Heidelberg, is well-suited and can be employed for this purpose. The physics cases, technical details of the existing ring facility and of the beam requirements at HIE-ISOLDE, together with the cost, time and manpower estimates for the transfer, installation and commissioning of the TSR at ISOLDE are discussed in the present technical design report.
Through 12 C + 197 Au collisions at √ sNN = 200 GeV using a multiphase transport (AMPT) model, the azimuthal angle dependences of the Hanbury Brown-Twiss (HBT) radii relative to the second-and third-order participant plane from π-π correlations are discussed. Three initial geometric configurations of 12 C, namely three-α-cluster triangle, three-α-cluster chain and Woods-Saxon distribution of nucleons, are taken into account, and their effects on the correlations are investigated. The ratio of the third-to the second-order HBT radii R 2 o(s),3 /R 2 o(s),2 is shown to be a clear probe for three configurations. In addition, this work presents the hadronic rescattering time evolution of the azimuthally dependent HBT radii. From the present study, one can learn that the HBT correlation from identical particles at freeze-out is able to provide the information of different initial configurations as collective flow proposed before.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.