This paper considers the problem of single image depth estimation. The employment of convolutional neural networks (CNNs) has recently brought about significant advancements in the research of this problem. However, most existing methods suffer from loss of spatial resolution in the estimated depth maps; a typical symptom is distorted and blurry reconstruction of object boundaries. In this paper, toward more accurate estimation with a focus on depth maps with higher spatial resolution, we propose two improvements to existing approaches. One is about the strategy of fusing features extracted at different scales, for which we propose an improved network architecture consisting of four modules: an encoder, decoder, multi-scale feature fusion module, and refinement module. The other is about loss functions for measuring inference errors used in training. We show that three loss terms, which measure errors in depth, gradients and surface normals, respectively, contribute to improvement of accuracy in an complementary fashion. Experimental results show that these two improvements enable to attain higher accuracy than the current state-of-the-arts, which is given by finer resolution reconstruction, for example, with small objects and object boundaries.
a b s t r a c tElectric vehicles can become integral parts of a smart grid, since they are capable of providing valuable services to power systems other than just consuming power. On the transmission system level, electric vehicles are regarded as an important means of balancing the intermittent renewable energy resources such as wind power. This is because electric vehicles can be used to absorb the energy during the period of high electricity penetration and feed the electricity back into the grid when the demand is high or in situations of insufficient electricity generation. However, on the distribution system level, the extra loads created by the increasing number of electric vehicles may have adverse impacts on grid. These factors bring new challenges to the power system operators. To coordinate the interests and solve the conflicts, electric vehicle fleet operators are proposed both by academics and industries. This paper presents a review and classification of methods for smart charging (including power to vehicle and vehicle-to-grid) of electric vehicles for fleet operators. The study firstly presents service relationships between fleet operators and other four actors in smart grids; then, modeling of battery dynamics and driving patterns of electric vehicles, charging and communications standards are introduced; after that, three control strategies and their commonly used algorithms are described; finally, conclusion and recommendations are made.
This paper examines the problem of adapting neural machine translation systems to new, low-resourced languages (LRLs) as effectively and rapidly as possible. We propose methods based on starting with massively multilingual "seed models", which can be trained ahead-of-time, and then continuing training on data related to the LRL. We contrast a number of strategies, leading to a novel, simple, yet effective method of "similar-language regularization", where we jointly train on both a LRL of interest and a similar high-resourced language to prevent over-fitting to small LRL data. Experiments demonstrate that massively multilingual models, even without any explicit adaptation, are surprisingly effective, achieving BLEU scores of up to 15.5 with no data from the LRL, and that the proposed similarlanguage regularization method improves over other adaptation methods by 1.7 BLEU points average over 4 LRL settings. 1 arXiv:1808.04189v1 [cs.CL] 13 Aug 2018 6 https://github.com/google/ sentencepiece, using the unigram training setting.7 Preliminary experiments found both comparable: with scores of 20.1 and 19.4 for separate and joint respectively. 8
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.