We report on the molecular beam epitaxial growth and structural characterization of self-organized AlGaN nanowire arrays on Si substrate with high luminescence efficiency emission in the deep ultraviolet (UV) wavelength range. It is found that, with increasing Al concentration, atomic-scale compositional modulations can be realized, leading to three-dimensional quantum confinement of charge carriers. By further exploiting the Anderson localization of light, we have demonstrated, for the first time, electrically injected AlGaN lasers in the deep UV band operating at room temperature. The laser operates at ∼289 nm and exhibits a threshold of 300 A/cm(2), which is significantly smaller compared to the previously reported electrically injected AlGaN multiple quantum well lasers.
With the aim of developing high‐performance flexible polymer solar cells, the preparation of flexible transparent electrodes (FTEs) via a high‐throughput gravure printing process is reported. By varying the blend ratio of the mixture solvent and the concentration of the silver nanowire (AgNW) inks, the surface tension, volatilization rate, and viscosity of the AgNW ink can be tuned to meet the requirements of gravure printing process. Following this method, uniformly printed AgNW films are prepared. Highly conductive FTEs with a sheet resistance of 10.8 Ω sq−1 and a high transparency of 95.4% (excluded substrate) are achieved, which are comparable to those of indium tin oxide electrode. In comparison with the spin‐coating process, the gravure printing process exhibits advantages of the ease of large‐area fabrication and improved uniformity, which are attributed to better ink droplet distribution over the substrate. 0.04 cm2 polymer solar cells based on gravure‐printed AgNW electrodes with PM6:Y6 as the photoactive layer show the highest power conversion efficiency (PCE) of 15.28% with an average PCE of 14.75 ± 0.35%. Owing to the good uniformity of the gravure‐printed AgNW electrode, the highest PCE of 13.61% is achieved for 1 cm2 polymer solar cells based on the gravure‐printed FTEs.
More than half of current coal power capacity is in China. A key strategy for meeting China’s 2060 carbon neutrality goal and the global 1.5 °C climate goal is to rapidly shift away from unabated coal use. Here we detail how to structure a high-ambition coal phaseout in China while balancing multiple national needs. We evaluate the 1037 currently operating coal plants based on comprehensive technical, economic and environmental criteria and develop a metric for prioritizing plants for early retirement. We find that 18% of plants consistently score poorly across all three criteria and are thus low-hanging fruits for rapid retirement. We develop plant-by-plant phaseout strategies for each province by combining our retirement algorithm with an integrated assessment model. With rapid retirement of the low-hanging fruits, other existing plants can operate with a 20- or 30-year minimum lifetime and gradually reduced utilization to achieve the 1.5 °C or well-below 2 °C climate goals, respectively, with complete phaseout by 2045 and 2055.
We have investigated the molecular beam epitaxial growth and characterization of nearly defect-free AlGaN nanowire heterostructures grown directly on Si substrate. By exploiting the Anderson localization of light, we have demonstrated electrically injected AlGaN nanowire lasers that can operate at 262.1 nm. The threshold current density is 200 A/cm2 at 77 K. The relatively low threshold current is attributed to the high Q-factor of the random cavity and the three-dimensional quantum confinement offered by the atomic-scale composition modulation in self-organized AlGaN nanowires.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.