Background: Medical image segmentation plays a vital role in computer-aided diagnosis (CAD) systems. Both convolutional neural networks (CNNs) with strong local information extraction capacities and transformers with excellent global representation capacities have achieved remarkable performance in medical image segmentation. However, because of the semantic differences between local and global features, how to combine convolution and transformers effectively is an important challenge in medical image segmentation. Methods: In this paper, we proposed TransConver, a U-shaped segmentation network based on convolution and transformer for automatic and accurate brain tumor segmentation in MRI images. Unlike the recently proposed transformer and convolution based models, we proposed a parallel module named transformerconvolution inception (TC-inception), which extracts local and global information via convolution blocks and transformer blocks, respectively, and integrates them by a cross-attention fusion with global and local feature (CAFGL) mechanism. Meanwhile, the improved skip connection structure named skip connection with cross-attention fusion (SCCAF) mechanism can alleviate the semantic differences between encoder features and decoder features for better feature fusion. In addition, we designed 2D-TransConver and 3D-TransConver for 2D and 3D brain tumor segmentation tasks, respectively, and verified the performance and advantage of our model through brain tumor datasets. Results: We trained our model on 335 cases from the training dataset of MICCAI BraTS2019 and evaluated the model's performance based on 66 cases from MICCAI BraTS2018 and 125 cases from MICCAI BraTS2019. Our TransConver achieved the best average Dice score of 83.72% and 86.32% on BraTS2019 and BraTS2018, respectively. Conclusions: We proposed a transformer and convolution parallel network named TransConver for brain tumor segmentation. The TC-Inception module effectively extracts global information while retaining local details. The experimental results demonstrated that good segmentation requires the model to extract local fine-grained details and global semantic information simultaneously, and our TransConver effectively improves the accuracy of brain tumor segmentation.
We consider the problem of learning predictive models from longitudinal data, consisting of irregularly repeated, sparse observations from a set of individuals over time. Such data often exhibit longitudinal correlation (LC) (correlations among observations for each individual over time), cluster correlation (CC) (correlations among individuals that have similar characteristics), or both. These correlations are often accounted for using mixed effects models that include fixed effects and random effects, where the fixed effects capture the regression parameters that are shared by all individuals, whereas random effects capture those parameters that vary across individuals. However, the current state-of-the-art methods are unable to select the most predictive fixed effects and random effects from a large number of variables, while accounting for complex correlation structure in the data and non-linear interactions among the variables. We propose Longitudinal Multi-Level Factorization Machine (LMLFM), to the best of our knowledge, the first model to address these challenges in learning predictive models from longitudinal data. We establish the convergence properties, and analyze the computational complexity, of LMLFM. We present results of experiments with both simulated and real-world longitudinal data which show that LMLFM outperforms the state-of-the-art methods in terms of predictive accuracy, variable selection ability, and scalability to data with large number of variables. The code and supplemental material is available at https://github.com/junjieliang672/LMLFM.
Online mobile advertising plays a vital financial role in supporting free mobile apps, but detecting malicious apps publishers who generate fraudulent actions on the advertisements hosted on their apps is difficult, since fraudulent traffic often mimics behaviors of legitimate users and evolves rapidly. In this paper, we propose a novel bipartite graph-based propagation approach, iBGP, for mobile apps advertising fraud detection in large advertising system. We exploit the characteristics of mobile advertising user’s behavior and identify two persistent patterns: power law distribution and pertinence and propose an automatic initial score learning algorithm to formulate both concepts to learn the initial scores of non-seed nodes. We propose a weighted graph propagation algorithm to propagate the scores of all nodes in the user-app bipartite graphs until convergence. To extend our approach for large-scale settings, we decompose the objective function of the initial score learning model into separate one-dimensional problems and parallelize the whole approach on an Apache Spark cluster. iBGP was applied on a large synthetic dataset and a large real-world mobile advertising dataset; experiment results demonstrate that iBGP significantly outperforms other popular graph-based propagation methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.