Approximate message passing (AMP) is a low-cost iterative signal recovery algorithm for linear system models. When the system transform matrix has independent identically distributed (IID) Gaussian entries, the performance of AMP can be asymptotically characterized by a simple scalar recursion called state evolution (SE). However, SE may become unreliable for other matrix ensembles, especially for ill-conditioned ones. This imposes limits on the applications of AMP.In this paper, we propose an orthogonal AMP (OAMP) algorithm based on de-correlated linear estimation (LE) and divergence-free non-linear estimation (NLE). The Onsager term in standard AMP vanishes as a result of the divergence-free constraint on NLE. We develop an SE procedure for OAMP and show numerically that the SE for OAMP is accurate for general unitarily-invariant matrices, including IID Gaussian matrices and partial orthogonal matrices. We further derive optimized options for OAMP and show that the corresponding SE fixed point coincides with the optimal performance obtained via the replica method. Our numerical results demonstrate that OAMP can be advantageous over AMP, especially for ill-conditioned matrices.Index Terms-Compressed sensing, approximate message passing (AMP), replica method, state evolution, unitarily-invariant, IID Gaussian, partial orthogonal matrix.
The management of bacterial infections is becoming a major clinical challenge due to the rapid evolution of antibiotic resistant bacteria. As an excellent candidate to overcome antibiotic resistance, antimicrobial peptides (AMPs) that are produced from the synthetic and natural sources demonstrate a broad-spectrum antimicrobial activity with the high specificity and low toxicity. These peptides possess distinctive structures and functions by employing sophisticated mechanisms of action. This comprehensive review provides a broad overview of AMPs from the origin, structural characteristics, mechanisms of action, biological activities to clinical applications. We finally discuss the strategies to optimize and develop AMP-based treatment as the potential antimicrobial and anticancer therapeutics.
Naive CD4 + T cells differentiate into functionally diverse T helper (Th) cell subsets. Th2 cells play a pathogenic role in asthma, yet a clear picture of their transcriptional profile is lacking. We performed single-cell RNA sequencing (scRNA-seq) of T helper cells from lymph node, lung, and airways in the house dust mite (HDM) model of allergic airway disease. scRNA-seq resolved transcriptional profiles of naive CD4 + T, Th1, Th2, regulatory T (Treg) cells, and a CD4 + T cell population responsive to type I interferons. Th2 cells in the airways were enriched for transcription of many genes, including Cd200r1, Il6, Plac8, and Igfbp7, and their mRNA profile was supported by analysis of chromatin accessibility and flow cytometry. Pathways associated with lipid metabolism were enriched in Th2 cells, and experiments with inhibitors of key metabolic pathways supported roles for glucose and lipid metabolism. These findings provide insight into the differentiation of pathogenic Th2 cells in the context of allergy.
Abstract-In this letter, we propose a turbo compressed sensing algorithm with partial discrete Fourier transform (DFT) sensing matrices. Interestingly, the state evolution of the proposed algorithm is shown to be consistent with that derived using the replica method. Numerical results demonstrate that the proposed algorithm outperforms the well-known approximate message passing (AMP) algorithm when a partial DFT sensing matrix is involved.
These preliminary data suggest that the use of MSCs could provide potential benefits in renal transplantation by reducing the dosage of conventional immunosuppressive drug that is required to maintain long-term graft survival and function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.