Studies have indicated that trichosanthin (TCS), a bioactive protein extracted and purified from the tuberous root of Trichosanthes kirilowii (a well-known traditional Chinese medicinal plant), produces antitumor effects on various types of cancer cells. However, the effects of TCS on glioma cells are poorly understood. The objective of this study was to investigate the antitumor effects of TCS on the U87 and U251 cell lines. The in vitro effects of TCS on these two cell lines were determined using a Cell Counting Kit-8 (CCK-8) assay, Annexin V-FITC staining, DAPI staining, Transwell assays, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assays, 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl-imidacar-bocyanine iodide (JC-1) staining and western blotting, which was utilized to assess the expression of leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) and key proteins in the Wnt/β-catenin signaling pathway. Our data indicated that TCS inhibited the proliferation of glioma cells in a dose- and time-dependent manner and played a role in inhibiting glioma cell invasion and migration. Additional investigation revealed that the expression levels of LGR5 and of key proteins in the Wnt/β-catenin signaling pathway were markedly decreased after TCS treatment. The results suggest that TCS may induce apoptosis in glioma cells by targeting LGR5 and repressing the Wnt/β-catenin signaling pathway. In the future, in vivo experiments should be conducted to examine the potential use of this compound as a novel therapeutic agent for gliomas.
Leucine-rich repeat containing G protein-coupled receptor 5 (LGR5), one of the target genes of the Wnt signaling pathway, has recently been identified as a marker for brain cancer stem-like cells. However, the role of LGR5 in glioma is poorly understood. The aim of the present study was to investigate the relationship between LGR5 expression and pathological grade in glioma, and the impact of LGR5 on the proliferation of glioma cells in vitro and in vivo. Firstly, LGR5 expression was immunohistochemically evaluated in 54 resected gliomas of different pathologic grades, and its association with Ki-67 was evaluated. Subsequently, using western blotting and qRT-PCR, the expression of LGR5 was assessed in three glioma cell lines U87, U118 and U251. Moreover, the effects of LGR5 knockdown by siRNA on glioma cell proliferation, cell cycle, clone formation and tumorsphere formation in vitro and gliomagenesis in vivo were assessed. The results revealed that i) LGR5 was positively expressed in all glioma specimens and its expression increased with pathologic grade and Ki-67 expression; ii) LGR5 was highly expressed in three glioma cell lines and its expression was reduced significantly by siRNA; and iii) RNAi-mediated downregulation of endogenous LGR5 in U87 cells resulted in the suppression of cell proliferation, arrest of the cell cycle, and reduction in clone and tumorsphere formation in vitro. In addition, LGR5 depletion significantly inhibited tumor orthotopic xenograft growth in nude mice. These findings indicate that LGR5 plays a major role in gliomagenesis by promoting neoplastic cell proliferation, suggesting LGR5 as a molecular marker for pathology and a novel therapeutic target for malignant glioma.
Inhibition of ionotropic glutamate receptors (iGluRs) is a potential target of therapy for ischemic stroke. Perampanel is a potent noncompetitive α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor (AMPAR) antagonist with good oral bioavailability and favorable pharmacokinetic properties. Here, we investigated the potential protective effects of perampanel against focal cerebral ischemia in a middle cerebral artery occlusion (MCAO) model in rats. Oral administration with perampanel significantly reduced MCAO-induced brain edema, brain infarct volume, and neuronal apoptosis. These protective effects were associated with improved functional outcomes, as measured by foot-fault test, adhesive removal test, and modified neurological severity score (mNSS) test. Importantly, perampanel was effective even when the administration was delayed to 1 h after reperfusion. The results of enzyme-linked immunosorbent assay (ELISA) showed that perampanel significantly decreased the expression of pro-inflammatory cytokines IL-1β and TNF-α, whereas it increased the levels of anti-inflammatory cytokines IL-10 and TGF-β1 after MCAO. In addition, perampanel treatment markedly decreased the expression of inducible nitric oxide synthase (iNOS) and neuronal nitric oxide synthase (nNOS), and also inhibited nitric oxide (NO) generation in MCAO-injured rats at 24 and 72 h after reperfusion. In conclusion, this study demonstrated that the orally active AMPAR antagonist perampanel protects against experimental ischemic stroke via regulating inflammatory cytokines and NOS pathways.
Abstract. Significant antitumor activity of Momordica anti-human immunodeficiency virus protein of 30 kDa (MAP30) purified from Momordica charantia has been the subject of previous research. However, the effective mechanism of MAP30 on malignant glioma cells has not yet been clarified. The aim of the present study was to investigate the effects and mechanism of MAP30 on U87 and U251 cell lines. A Cell Counting Kit-8 assay, wound healing assay and Transwell assay were used to detect the effects on U87 and U251 cells treated with different concentrations of MAP30 (0.5, 1, 2, 4, 8 and 16 µM) over different periods of time. Proliferation, migration and invasion of each cell line were markedly inhibited by MAP30 in a dose-and time-dependent manner. Flow cytometry and fluorescence staining demonstrated that apoptosis increased and the cell cycle was arrested in S-phase in the two investigated cell lines following MAP30 treatment. Western blot analysis demonstrated that leucine-rich-repeat-containing G-protein-coupled receptor 5 (LGR5) expression and key proteins in the Wnt/β-catenin signaling pathway were apparently decreased, whereas second mitochondria-derived activator of caspase (Smac) protein expression significantly increased with MAP30 treatment in the same manner. These results suggest that MAP30 markedly induces apoptosis in U87 and U251 cell lines by suppressing LGR5 and the Wnt/β-catenin signaling pathway, and enhancing Smac expression in a dose-and time-dependent manner.
Background: Many studies have reported a relationship between the vascular endothelial growth factor receptor 2 single nucleotide polymorphism (SNP) rs2305948 and glioma, but their conclusions have been controversial. A meta-analysis was performed to assess the association between rs2305948 and glioma susceptibility. Methods: Inclusion criteria and a strategy for screening of original literature were created. Eligible articles on the correlation between the SNP rs2305948 and glioma were identified in the PubMed, Embase, Web of Science, Cochrane Library, CNKI and Wanfang databases. After extracting the data, Stata 12. 0 software was used to perform statistical analysis under 5 genetic models and to calculate the combined odds ratio (OR) value and its 95% confidence interval (CI). Results: Four case-control studies including 1595 cases and 1657 controls were entered into the study. The overall analysis showed that no obvious association existed between rs2305948 and glioma risk (allele: OR = 1.20, 95% CI = 0.93–1.54, P = .162; dominant: OR = 1.17, 95% CI = 0.93–1.46, P = .174; recessive: OR = 1.72, 95% CI = 0.94–3.15, P = .076; heterozygous: OR = 1.11, 95% CI = 0.94–1.30, P = .226; homozygous: OR = 1.74, 95% CI = 0.92–3.29, P = .088). The subgroup analysis suggested that the SNP rs2305948 was related to glioma susceptibility under allele, dominant, recessive and homozygote models in the Asian population (allele: OR = 1.34, 95% CI = 1.16–1.55, P < .001; recessive: OR = 2.24, 95% CI = 1.49–3.36, P < .001; homozygous: OR = 2.32, 95% CI = 1.54–3.50, P < .001). Conclusion: The vascular endothelial growth factor receptor 2 rs2305948 gene polymorphism may be related to glioma susceptibility in the Asian population. However, the association is not clear in non-Asian populations, for which there has been less research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.