Much attention has been paid on the soil-water characteristic curve (SWCC) during decades because it plays great roles in unsaturated soil mechanics. However, it is time-consuming and costly to obtain a series of entire saturation-suction data by experiments. The curves acquired by directly fitting empirical equations to limited experimental data are greatly different from the actual SWCC, and the relevant soil parameters obtained by inaccurate curve are also incorrect. Thus, an improved prediction method for more accurate entire SWCC was established. This novel method was based on the analysis of shape characteristics of SWCC with three critical points S , C 1 , and C 2 under the hypothesis of geometrical symmetric relation. The theoretical computation was specifically deduced under conventional Gardner, VG, and FX models, respectively, and then inferred on different soil types of 45 collected SWCC datasets. This geometrical symmetric relation exhibited well in all these three conventional empirical equations, especially in Gardner equation. Finally, a series of filer paper tests on sand, silt, and clay were also carried out to acquire entire SWCC curve for the verification and evaluation of the proposed geometrical method. Results show that this improved prediction method effectively decreases deviation resulting from directly fitting empirical equations to limited data of wide types of soils. The averaged improvement was larger under VG equation than under Gardner and FX equation. It proved that the accuracy of predicting greatly depends on the shape characteristic point of maximum curve curvature (point C 2 ), other than the number of points. This research provides a novel computation method to improve prediction accuracy even under relative less experimental data.
Cement is always used in underground construction to reinforce and improve soft clay, resulting in the formation of a cemented soil–concrete interface. It is of great importance to study interface shear strength and failure mechanisms. So, in order to figure out the failure mechanism and characteristics of a cemented soil–concrete interface, a series of large-scale shear tests of a cemented soil–concrete interface, and corresponding unconfined compressive tests and direct shear tests of cemented soil, were carried out specifically under different impact factors. A kind of bounding strength was observed during large-scale interface shearing. Resultantly, three stages of the shear failure process of the cemented soil–concrete interface are proposed, and bonding strength, peak (shear) strength and residual strength are pointed out, respectively, in interface shear stress–strain development. Based on the analysis results of the impact factors, the shear strength of the cemented soil–concrete interface increases with age, the cement mixing ratio and normal stress, and decreases with the water–cement ratio. Additionally, the interface shear strength grows much more rapidly after 14 d to 28 d compared to the early stage (1~7 d). Additionally, the shear strength of the cemented soil–concrete interface is positively related to unconfined compressive strength and shear strength. However, the trends of the bonding strength and unconfined compressive strength or shear strength are much closer than those of the peak and residual strength. This is considered to be related to the cementation of cement hydration products and probably the particle arrangement of the interface. Particularly, the cemented soil–concrete interface shear strength is always smaller than the cemented soil’s own shear strength at any age.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.