Surface water characteristics of the Beaufort Sea have global climate implications during the last deglaciation and the Holocene, as (1) sea ice is a critical component of the climate system and (2) Laurentide Ice Sheet meltwater discharges via the Mackenzie River to the Arctic Ocean and further, to its outflow near the deep-water source area of the Atlantic Meridional Overturning Circulation. Here we present high-resolution biomarker records from the southern Beaufort Sea. Multi-proxy biomarker reconstruction suggests that the southern Beaufort Sea was nearly ice-free during the deglacial to Holocene transition, and a seasonal sea-ice cover developed during the mid-late Holocene. Superimposed on the long-term change, two events of high sediment flux were documented at ca. 13 and 11 kyr BP, respectively. The first event can be attributed to the Younger Dryas flood and the second event is likely related to a second flood and/or coastal erosion.
The changes in atmospheric pCO2 provide evidence for the release of large amounts of ancient carbon during the last deglaciation. However, the sources and mechanisms that contributed to this process remain unresolved. Here, we present evidence for substantial ancient terrestrial carbon remobilization in the Canadian Arctic following the Laurentide Ice Sheet retreat. Glacial-retreat-induced physical erosion of bedrock has mobilized petrogenic carbon, as revealed by sedimentary records of radiocarbon dates and thermal maturity of organic carbon from the Canadian Beaufort Sea. Additionally, coastal erosion during the meltwater pulses 1a and 1b has remobilized pre-aged carbon from permafrost. Assuming extensive petrogenic organic carbon oxidation during the glacial retreat, a model-based assessment suggests that the combined processes have contributed 12 ppm to the deglacial CO2 rise. Our findings suggest potentially positive climate feedback of ice-sheet retreat by accelerating terrestrial organic carbon remobilization and subsequent oxidation during the glacial-interglacial transition.
<p>It is consensus that the deglacial changes in ocean carbon storage and circulation play a role in regulating atmospheric CO<sub>2</sub>. However, emerging evidence suggests that the rapid deglacial CO<sub>2</sub> rises can in part be attributed to large quantities of pre-aged carbon being released from degrading permafrost. In this study, we apply a radiocarbon approach on both terrestrial compounds (high molecular weight fatty acids; HWM-FA) and bulk organic carbon from a well-studied core ARA04C/37 from the Canadian Beaufort Sea. Based on our records, substantial amounts of ancient carbon were supplied from land to the ocean during the mid-late deglaciation (14.5-10 cal. kyr BP) by frequent high sediment flux events. Because the core location is strongly influenced by the Mackenzie River discharge, sediments only contain minor contributions from marine organic matter, allowing to consider mainly two terrestrial sources to explain the characteristics of bulk sedimentary organic matter. The terrestrial HMW-FA are taken to represent the biospheric carbon, and their age differences from the bulk organic carbon are explained by petrogenic carbon input. During the Younger Dryas, ice-sheet melting and meltwater outbursts enhanced petrogenic carbon contributions, suggesting a major source in the hinterland drainage system. During the rapid sea-level rise (meltwater pulses 1a and 1b), the very old organic carbon and comparable ages between biospheric carbon and bulk organic carbon indicate the occurrence of permafrost carbon remobilization primarily via coastal erosion while petrogenic carbon from the drainage system was found negligible. Remobilized ancient permafrost carbon is commonly regarded to be highly bioavailable, while petrogenic carbon is likely more recalcitrant to biological degradation. Our records thus suggest that the release of ancient carbon to the Beaufort Sea had the strongest impact on the atmospheric CO<sub>2</sub> level and contributed to its rapid increases during the B/A and Pre-Boreal when permafrost deposits along the coast were eroded.</p>
<p>The Arctic is changing rapidly, and one of the main and most obvious features is the drastic sea-ice retreat over the past few decades. Over such time scales, observations are deficient and not long enough for deciphering the processes controlling this accelerated sea-ice retreat. Thus, high-resolution, longer-term proxy records are needed for reconstruction of natural climate variability. In this context, we applied a biomarker approach on the well-dated sediment core ARA04C/37 recovered in the southern Beaufort Sea directly off the Mackenzie River, an area that is characterized by strong seasonal variability in sea-ice cover, primary productivity and terrigenous (riverine) input. Based on our biomarker records, the Beaufort Sea region was nearly ice-free in summer during the late Deglacial to early Holocene (14 to 8 ka). During the mid-late Holocene (8 to 0 ka), a seasonal sea-ice cover developed, coinciding with a drop in both terrigenous sediment flux and primary production. Supported by multiple proxy records, two major flood events characterized by prominent maxima in sediment flux occurred near 13 and 11 ka. The former is coincident with the Younger Dryas Cooling Event probably triggered by a &#160;freshwater outburst from the Lake Agassiz. The origin of the second (younger) one might represent a second Mackenzie flood event, coinciding with meltwater pulse IB/post-glacial flooding of the shelf and related increased coastal erosion. Here, our interpretation remains a little bit speculative, and further research is needed and also in progress.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.