Elevational gradients strongly affect microbial biodiversity in bulk soil through altering plant and soil properties, but the effects on rhizosphere microbial patterns remain unclear, especially at large spatial scales. We therefore designed an elevational gradient experiment to examine rhizosphere microbial (bacteria, fungi and arbuscular mycorrhizal fungi) diversity and composition using Illumina sequencing of the 16S rRNA and ITS genes for comparison to plant and soil properties. Our results showed that bacterial and fungal alpha diversity was significantly higher at mid-elevation, while AMF alpha diversity decreased monotonically. The beta diversities of the three groups were significantly affected by elevational gradients, but the effect on bacterial beta diversity was larger than on fungal and AMF beta diversity. Proteobacteria, the dominant phyla of bacteria, was significantly higher at the mid-elevation, while Acidobacteria and Actinobacteria significantly decreased as elevation increased. The main fungal taxa, Basidiomycota, significantly decreased with elevation, and Ascomycota significantly increased with elevation. Glomeromycota, the dominant AMF phyla, responded insignificantly to the elevational gradients. The responses of bacterial and fungal alpha diversity were mostly associated with tree diversity and organic carbon, whereas AMF alpha diversity mainly depended on litter N and P. Changes in bacterial community composition along the elevational gradient were explained primarily by litter N and P, and litter P was the main driver of fungal and AMF community composition. Overall, our results suggest that plant litter, particularly litter N and P, were the main source of external carbon input and drove the observed differences in rhizosphere microbial diversity and community composition. Our results highlight the importance of litter nutrition in structuring rhizosphere microbial communities in mountain ecosystems.
An efficient and robust Rh(III)-catalyzed C−H homoallylation of indolines has been developed. Using 4-vinyl-1,3-dioxan-2-one as coupling parnter, a range of homoallylic alcohols could be prepared in excellent stereoselectivities. The current strategy exhibits high efficiency, good yields, and exceptional functional group tolerance.
Increasingly, tropical studies based on aboveground traits have suggested that lianas have a more acquisitive strategy than trees, thereby possibly explaining the increase in lianas relative to trees in many tropical forests under global change. However, few studies have tested whether this pattern can be extended to root traits and temperate forests. In this study, we sampled 61 temperate liana-host tree pairs and quantified 11 commonly studied functional traits representative of plant economics in roots, stems, and leaves; we aimed to determine whether root, stem and leaf traits are coordinated across lifeforms, and whether temperate lianas are also characterized by more fast and acquisitive traits than trees. Our results showed that leaf and stem traits were coordinated across lifeforms but not with root traits, suggesting that aboveground plant economics is not always correlated with belowground economics, and leaf and stem economic spectra cannot be expanded to the root directly. Compared with host trees, lianas had more acquisitive leaf and stem traits, such as higher specific leaf area and lower leaf dry matter content, leaf carbon content, leaf mass per area, and wood density, suggesting that lianas have a more acquisitive strategy than host trees in the temperate forest. The differences between lianas and trees in plant strategy may drive their contrasting responses to the changing temperate forest environment under global change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.