Accurate and seamless vehicle positioning is fundamental for autonomous driving tasks in urban environments, requiring the provision of high-end measuring devices. Light Detection and Ranging (lidar) sensors, together with Global Navigation Satellite Systems (GNSS) receivers, are therefore commonly found onboard modern vehicles. In this paper, we propose an integration of lidar and GNSS code measurements at the observation level via a mixed measurement model. An Extended Kalman-Filter (EKF) is implemented to capture the dynamic of the vehicle movement, and thus, to incorporate the vehicle velocity parameters into the measurement model. The lidar positioning component is realized using point cloud registration through a deep neural network, which is aided by a high definition (HD) map comprising accurately georeferenced scans of the road environments. Experiments conducted in a densely built-up environment show that, by exploiting the abundant measurements of GNSS and high accuracy of lidar, the proposed vehicle positioning approach can maintain centimeter-to meter-level accuracy for the entirety of the driving duration in urban canyons.
Knowledge of deteriorations within tree trunks is critical for arborists to conduct individual tree health assessments. Sonic tree tomography, a non‐destructive technique using sound waves, has been widely used to estimate the size and shape of internal decay based on sound wave velocity variations. However, it has commonly been applied to 2D horizontal or vertical cross sections and its accuracy is questionable due to the poor approximation of the shape of the cross section. This paper proposes an integration of close‐range photogrammetry and sonic tomography to enable accurate reconstruction of the exterior and interior of the tree trunk in 3D. The internal wood quality is represented by the spatially interpolated sound wave velocities, using the time of flight of the sound waves and the coordinates of the acoustic sensors obtained from the photogrammetric model. Experimental results show that the proposed approach provides a realistic 3D visualisation of the size, shape and location of the internal deteriorations.
High-precision vehicle positioning is key to the implementation of modern driving systems in urban environments. Global Navigation Satellite System (GNSS) carrier phase measurements can provide millimeter- to centimeter-level positioning, provided that the integer ambiguities are correctly resolved. Abundant code measurements are often used to facilitate integer ambiguity resolution (IAR), however, they suffer from signal blockage and multipath in urban canyons. In this contribution, a lidar-aided instantaneous ambiguity resolution method is proposed. Lidar measurements, in the form of 3D keypoints, are generated by a learning-based point cloud registration method using a pre-built HD map and integrated with GNSS observations in a mixed measurement model to produce precise float solutions, which in turn increase the ambiguity success rate. Closed-form expressions of the ambiguity variance matrix and the associated Ambiguity Dilution of Precision (ADOP) are developed to provide a priori evaluation of such lidar-aided ambiguity resolution performance. Both analytical and experimental results show that the proposed method enables successful instantaneous IAR with limited GNSS satellites and frequencies, leading to centimeter-level vehicle positioning.
Global navigation satellite system (GNSS) and light detection and ranging (lidar) are well known to be complementary for vehicle positioning in urban canyons, where GNSS observations are prone to signal blockage and multi-path. As one of the most common carrier-phase-based precise positioning techniques, precise point positioning (PPP) enables single-receiver positioning as it utilizes state-space representation corrections for satellite orbits and clocks and does not require a nearby reference station. Yet PPP suffers from a long positioning convergence time. In this contribution, we propose to reduce the PPP convergence using an observation-level integration of GNSS and lidar. Lidar measurements, in the form of 3D keypoints, are generated by registering online scans to a pre-built high-definition map through deep learning and are then combined with dual-frequency PPP (DF-PPP) observations in an extended Kalman filter implementing the constant-velocity model that captures the vehicle dynamics. We realize real-time PPP (RT-PPP) in this integration using the IGS real-time service products for vehicle positioning. Comprehensive analyses are provided to evaluate different combinations of measurements and PPP corrections in both static and simulated kinematic modes using data captured by multiple receivers. Experimental results show that the integration achieves cm-level accuracy and instantaneous convergence by using redundant measurements. Accordingly, for classical PPP accuracy of 10 cm and convergence within minutes, respectively, lidar input is only required once every 10 s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.