Cryo-electron microscopy produces 3D density maps of molecular machines, which consist of various molecular components such as proteins and RNA. Segmentation of individual components in such maps is a challenging task, and is mostly accomplished interactively. We present an approach based on the immersive watershed method and grouping of the resulting regions using progressively smoothed maps. The method requires only three parameters: the segmentation threshold, a smoothing step size, and the number of smoothing steps. We first apply the method to maps generated from molecular structures and use a quantitative metric to measure the segmentation accuracy. The method does not attain perfect accuracy, however it produces single or small groups of regions that roughly match individual proteins or subunits. We also present two methods for fitting of structures into density maps, based on aligning the structures with single or groups of regions. The first method aligns centers and principal axes, whereas the second aligns centers and then rotates the structure to find the best fit. We describe both interactive and automated ways of using these two methods. Finally, we show segmentation and fitting results for several experimentally obtained density maps.
Group II chaperonins are essential mediators of cellular protein folding in eukaryotes and archaea. These oligomeric protein machines, ~1MDa, consist of two back-to-back rings encompassing a central cavity that accommodates polypeptide substrates1,2,3. Chaperonin-mediated protein folding is critically dependent on the closure of a built-in lid4,5, which is triggered by ATP hydrolysis6. The structural rearrangements and molecular events leading to lid closure are still unknown. Here, we report four single particle cryo-EM structures of Mm-cpn, an archaeal group II chaperonin5,7, in the nucleotide-free (open) and nucleotide-induced (closed) states. The 4.3 Å resolution of the closed conformation allowed building of the first ever atomic model directly from the cryo-EM density map, in which we were able to visualize the nucleotide and over 70% of the sidechains. The model of the open conformation was obtained by using the deformable elastic network modeling with the 8 Å resolution open state cryo-EM density restraints. Together, the open and closed structures reveal how local conformational changes triggered by ATP hydrolysis lead to an alteration of intersubunit contacts within and across the rings, ultimately causing a rocking motion that closes the ring. Our analysis reveals an intricate and unforeseen set of interactions controlling allosteric communication and inter-ring signaling driving the conformational cycle of group II chaperonins. Beyond this, we anticipate our methodology of combining single particle cryo-EM and computational modeling will become a powerful tool in the determination of atomic details involved in the dynamic processes of macromolecular machines in solution.
Summary Group II chaperonins are ATP-dependent ring-shaped complexes that bind non-native polypeptides and facilitate protein folding in archaea and eukaryotes. A built-in lid encapsulates substrate proteins within the central chaperonin chamber. Here we describe the fate of the substrate during the nucleotide cycle of group II chaperonins. The chaperonin substrate-binding sites are exposed and the lid is open in both the ATP-free and ATP-bound pre-hydrolysis states. ATP hydrolysis has a dual function in the folding cycle, triggering both lid closure and substrate release into the central chamber. Notably, substrate release can occur in the absence of a lid and lid closure can occur without substrate release. However, productive folding requires both events, so that the polypeptide is released into the confined space of the closed chamber where it folds. Our results show that ATP hydrolysis coordinates the structural and functional determinants that trigger productive folding.
Viruses are infections species that infect a large spectrum of living systems. Although displaying a wide variety of shapes and sizes, they are all composed of nucleic acid encapsulated into a protein capsid. After virions enter the host cell, they replicate to produce multiple copies of themselves. They then lyse the host, releasing virions to infect new cells. The high proliferation rate of viruses is the underlying cause of their fast transmission among living species. Although many viruses are harmless, some of them are responsible for severe diseases such as AIDS, viral hepatitis, and flu. Traditionally, electron microscopy is used to identify and characterize viruses. This approach is time- and labor-consuming, which is problematic upon pandemic proliferation of previously unknown viruses, such as H1N1 and COVID-19. Herein, we demonstrate a novel diagnosis approach for label-free identification and structural characterization of individual viruses that is based on a combination of nanoscale Raman and infrared spectroscopy. Using atomic force microscopy–infrared (AFM-IR) spectroscopy, we were able to probe structural organization of the virions of Herpes Simplex Type 1 viruses and bacteriophage MS2. We also showed that tip-enhanced Raman spectroscopy (TERS) could be used to reveal protein secondary structure and amino acid composition of the virus surface. Our results show that AFM-IR and TERS provide different but complementary information about the structure of complex biological specimens. This structural information can be used for fast and reliable identification of viruses. This nanoscale bimodal imaging approach can be also used to investigate the origin of viral polymorphism and study mechanisms of virion assembly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.