Background Gossypium hirsutum L. is the most widely cultivated cotton species, and a high-quality reference genome would be a huge boost for researching the molecular mechanism of agronomic traits in cotton. Findings Here, Pacific Biosciences and Hi-C sequencing technologies were used to assemble a new upland cotton genome of the No. 1 Chinese cotton variety CRI-12. We generated a high-quality assembled CRI-12 genome of 2.31 Gb with a contig N50 of 19.65 Mb, which was superior to previously reported genomes. Comparisons between CRI-12 and other reported genomes revealed 7,966 structural variations and 7,378 presence/absence variations. The distribution of the haplotypes among A-genome (Gossypium arboreum), D-genome (Gossypium raimondii), and AD-genome (G. hirsutum and Gossypium barbadense) suggested that many haplotypes were lost and recombined in the process of polyploidization. More than half of the haplotypes that correlated with different tolerances were located on chromosome D13, suggesting that this chromosome may be important for wide adaptation. Finally, it was demonstrated that DNA methylation may provide advantages in environmental adaptation through whole-genome bisulfite sequencing analysis. Conclusions This research provides a new reference genome for molecular biology research on Gossypium hirsutum L. and helps decode the broad environmental adaptation mechanisms in the No. 1 Chinese cotton variety CRI-12.
Puccinia striiformis f. sp. tritici (Pst) is the causative agent of wheat stripe rust, which can lead to a significant loss in annual wheat yields. Therefore, there is an urgent need for a deeper comprehension of the basic mechanisms underlying Pst infection. Effectors are known as the agents that plant pathogens deliver into host tissues to promote infection, typically by interfering with plant physiology and biochemistry. Insights into effector activity can significantly aid the development of future strategies to generate disease-resistant crops. However, the functional analysis of Pst effectors is still in its infancy, which hinders our understanding of the molecular mechanisms of the interaction between Pst and wheat. In this review, we summarize the potential roles of validated and proposed Pst effectors during wheat infection, including proteinaceous effectors, non-coding RNAs (sRNA effectors), and secondary metabolites (SMs effectors). Further, we suggest specific countermeasures against Pst pathogenesis and future research directions, which may promote our understanding of Pst effector functions during wheat immunity attempts.
Background Nucleobase–ascorbate transporters (NAT), synonymously called nucleobase–cation symporter 2 (NCS2) proteins, were earlier reported to be involved in plant growth, development and resistance to stress. Previous studies concluded that s a polymorphic SNP associated with NAT12 was significant different between salt-tolerant and salt-sensitive materials of upland cotton. In current study, a comprehensive analysis of NAT family genes was conducted for the first time in cotton. Results In this study, we discovered 32, 32, 18, and 16 NAT genes in Gossypium hirsutum, G. barbadense, G. raimondii and G. arboreum, respectively, which were classified into four groups (groups I–IV) based on the multiple sequence analysis. These GhNAT genes were unevenly distributed on At and Dt sub-genome in G. hirsutum. Most GhNAT members in the same group had similar gene structure characteristics and motif composition. The collinearity analysis revealed segmental duplication as well as tandem duplication contributing to the expansion of the GhNATs. The analysis of cis-acting regulatory elements of GhNATs showed that the function of GhNAT genes in cotton might be related to plant hormone and stress response. Under different conditions, the expression levels further suggested the GhNAT family genes were associated with plant response to various abiotic stresses. GhNAT12 was detected in the plasma membrane. And it was validated that the GhNAT12 gene played an important role in regulating cotton resistance to salt and drought stress through the virus-induced gene silencing (VIGS) analysis. Conclusions A comprehensive analysis of NAT gene family was performed in cotton, including phylogenetic analysis, chromosomal location, collinearity analysis, motifs, gene structure and so on. Our results will further broaden the insight into the evolution and potential functions of NAT genes in cotton. Current findings could make significant contribution towards screening more candidate genes related to biotic and abiotic resistance for the improvement in cotton.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.