Specific knowledge about the characteristics of coastal land use along the sea–land direction helps to better understand the spatial heterogeneity of coastal land use, which could offer scientific support for rational land management and the sustainable development of the coastal zone. However, the traditional methods including buffering or the regional method are hard to extract detailed spatial structure and location correlations of coastal land use along the sea–land direction. Therefore, we developed a model, called sequence–based clustering of coastal land use pattern (SCCLUP), to mine the coastal land use sequence patterns (CLUSPs) along the sea–land direction. As a case study in the major coastal zone of Bohai Bay and the Yellow River Delta from 1990 to 2010, we found that: (1) The land use showed a sequential distribution along the sea–land direction. And the land use closed to shoreline and inland boundary had relative stable sequential location along the sea–land direction. However, the middle land uses had dynamic sequential locations that led to multiple CLUSPs; (2) due to the increasing percent of construction land, the artificial level of CLUSPs was continuously increasing and new CLUSPs tended to distribute around port areas. Different CLUSPs with similar land use sequential relationships tended to have similar land use structure along the sea–land direction; (3) the land uses sequential location along the sea–land direction revealed the actual distance of land use to the shoreline and had a tight correlation with environmental factors (salinity, water, and landform). The land use with large increasing and wide adaptivity (like construction land) had a large impact on the changes of CLUSPs in the study area. Therefore, strong control should be provided for the excessive expansion of land use like construction land to limit the over changes in land use pattern along the sea–land direction. Additionally, the spatial heterogeneity of land use along the sea–land direction should be considered to a better understanding of anthropic impacts on the coastal zone.
Abstract:As a way of turning sea into land for living space for humans, the actions of sea reclamation bring about significant benefits. Nevertheless, it is also an under-recognized threat to the environment and the marine ecosystem. Based on images in two periods, sea reclamation information of countries around the South China Sea was extracted from 1975 to 2010. The spatial state and driven forces of sea reclamation are then discussed. Results show that the overall strength of sea reclamation in the South China Sea was great. New reclaimed land added up to 3264 km 2 . Sea reclamation for fish farming was the main reclamation type and widely distributed in the whole area, especially on the coast from the Pearl River Delta to the Red River Delta, and the coast of Ca Mau Peninsula. Sea reclamation in China and Vietnam was rather significant, which occupies 80.6% of the total reclamation area. Singapore had the highest level of sea reclamation. New reclaimed land for fish farming holds a key role in China, Vietnam, and Indonesia, while new reclaimed land for construction and docks dominated in Malaysia, Singapore, and Brunei. Areas and use-type compositions of new reclaimed land in countries varied greatly due to the differences of economic factors, policy inclination, and landscapes in the respective countries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.