Four new rare-earth compounds, [Eu(NDC)1.5(DMF)2] (1), [Nd2(NDC)3(DMF)4].H2O (2), [La2(NDC)3(DMF)4].0.5H2O (3), and [Eu(BTC)(H2O)] (4), where NDC = 1,4-naphthalenedicarboxylate, BTC = 1,3,5-benzenetricarboxylate, and DMF = N,N-dimethylformamide, have been synthesized through preheating and cooling-down crystallization. Compounds 1-3 possess similar 2D structures, in which the NDC ligands link M(III) (M = La, Nd, and Eu) ions of two adjacent double chains constructed by NDC ligands and dinuclear M(III) building units. In compound 4, the Eu(III) ion is seven-coordinated by O atoms from six BTC ligands and one terminal water molecule in a distorted pentagonal-bipyramidal coordination environment. If the BTC ligand and the Eu(III) ion are regarded as six-connected nodes, respectively, the structure of compound 4 can be well described as a 3D six-connected net. Furthermore, compounds 1 and 4 exhibit strong red luminescence upon 355-nm excitation. Compound 2 displays interesting emissions in the near-IR region, and yellow (580 nm) pumping of this compound results in UV and intense blue emissions through an up-conversion process. The magnetic properties of compounds 1, 2, and 4 have been studied through measurement of their magnetic susceptibilities over the temperature range of 4-300 K.
A series of Pb(II) coordination polymers [Pb(ndc)(dpp)] (1), [Pb(ndc)(ptcp)].0.5 H2O (2), [Pb(ndc)(dppz)] (3), [Pb(ndc)(tcpn)(2)] (4), [Pb2(ndc)2(tcpp)] (5), [Pb(Hndc)2].H2O (6), [Pb(ndc)(dma)] (7), [Pb(bdc)(dma)] (8), [Pb(trans-chdc)(H2O)] (9), and [Pb2(cis-chdc)2].NH(CH3)2 (10), where ndc=1,4-naphthalenedicarboxylate, dpp=4,7-diphenyl-1,10-phenanthroline, ptcp=2-phenyl-1H-1,3,7,8-tetraazacyclopenta[l]phenanthrene, dppz=dipyrido[3,2-a:2',3'-c]phenazine, tcpn=2-(1H-1,3,7,8-tetraazacyclopenta[l]phenanthren-2-yl)naphthol, tcpp=4-(1H-1,3,7,8-tetraazacyclopenta[l]phenanthren-2-yl)phenol, dma=N,N-dimethylacetamide, bdc=1,4-benzenedicarboxylate, and chdc=1,4-cyclohexanedicarboxylate, have been synthesized from a hydrothermal or solvothermal reaction system by varying the ligands or the solvents. Compounds 1-5 crystallize with an N-donor chelating ligand and an aromatic dicarboxylate linker. Compounds 1-4 are 1D polymers with different pi-pi stacking interactions, whereas compound 5 consists of 2D layers. The structures of compounds 7, 8, and 10 are 3D frameworks formed by connection of the Pb(II) centers by organic acid ligands. Compound 7 is chiral although the ndc ligand is achiral, while the framework of 8 is a typical 3D (3,4)-connected net. Compound 10 is the first example of Pb(II) wheel cluster [Pb(8)O(8)] units bridged by carboxylate groups. Compound 6 contains 1D chains which are further extended to a 3D structure by pi-pi interactions. Compound 9 consists of a 2D network constructed by Pb(II) centers and trans-chdc ligands. The structural differences between 7 and 8 and between 9 and 10 indicate the importance of solvents for framework formation of the coordination polymers. By varying the solvent the cis and trans conformations of H(2)chdc in 9 and 10 were separated completely. The photoluminescence and nonlinear optical properties of the coordination polymers have also been investigated.
In order to establish a rapid detection method for Mycoplasma ovipneumoniae , this study used the loop-mediated isothermal amplification (LAMP) technique to carry out nucleic acid amplification and chromatographic visualization via a lateral flow dipstick (LFD) assay. The M. ovipneumoniae elongation factor TU gene ( EF-TU ) was detected using a set of specific primers designed for the EF-TU gene, and the EF-TU FIP was detected by biotin labeling, which was used in the LAMP amplification reaction. The digoxin-labeled probe specifically hybridized with LAMP products, which were visually detected by LFD. Here, we established the M. ovipneumoniae LAMP-LFD rapid detection method and tested the specificity, sensitivity, and clinical application of this method. Results showed that the optimized LAMP performed at 60 °C for 60 min, and LFD can specifically and visually detect M. ovipneumoniae with a minimum detectable concentration at 1.0 × 10 2 CFU/mL. The sensitivity of LAMP-LFD was 1000 times that of the conventional PCR detection methods, and the clinical lung tissue detection rate was 86% of 50 suspected sheep infected with M. ovipneumoniae . In conclusion, LAMP-LFD was established in this study to detect M. ovipneumoniae , a method that was highly specific, sensitive, and easy to operate, and provides a new method for the prevention and diagnosis of M. ovipneumoniae infection. Electronic supplementary material The online version of this article (10.1007/s11274-019-2601-5) contains supplementary material, which is available to authorized users.
Green roofs are becoming a major nature‐based solution worldwide to reduce urban stormwater runoff. Runoff reduction and retention mainly depend on the hydrological characteristics of substrates and the water use strategies of plants. However, little is known about how plant species affect the hydrological performance of green roofs. Two commonly used succulent plants and four turfgrass species were investigated for their impacts on the hydrological performance and runoff reduction of green roof lysimeters under controlled conditions using a rainfall simulator. The results showed that two succulent plants (Sedum lineare and Callisia repens) did not make significant contributions to canopy interception in any of the four seasons and made only minor contributions to evapotranspiration (ET) water loss in autumn and winter, resulting in minor effects on runoff reduction by the green roofs. Festuca arundinacea contributed 47.4–116.7% of water loss via transpiration and 36.5% of runoff reduction under a 25 mm day−1 rainfall intensity in spring and 48.0% of runoff reduction under a 10 mm day−1 rainfall intensity in winter. Poa pratensis, Lolium perenne, and Agrostis stolonifera also significantly reduced runoff. Runoff reductions by extensive green roofs were mainly caused by ET rather than by their canopy interceptions. Plant shoot biomass and ET were the primary factors controlling the runoff reduction by extensive green roofs. Our results strongly suggest that the runoff reduction capacity of extensive green roofs can be greatly improved by selecting plant species with a higher shoot biomass and ET rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.