Tolerance intervals (TIs) are commonly employed in numerous industries, ranging from engineering to pharmaceuticals. However, closed‐form TIs are unavailable for most distributions. Although some approximate methods can be used to obtain TIs, coverage probabilities (CPs) of these TIs cannot achieve the nominal level, or can be even far different from the nominal level. In this study, we propose two content‐adjusted procedures for TIs based on bootstrap. The first one is based on the bootstrap sample quantile, while the second one is based on the asymptotic normality of empirical distribution. The simulation results show that the two calibration procedures can improve CPs of TIs for some non‐normal distributions according to extensive numerical simulations, and they are both proved to be effective through real data examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.