The design and development of advanced energy storage systems with both high energy/power densities and long cycling life have long been a research hotspot. Zinc‐ion hybrid capacitors (ZICs) are regarded as emerging and highly promising candidates, which originates from the combined advantages of zinc‐ion batteries (ZIBs) with large energy density and supercapacitors (SCs) with exceptional power density and cycle stability. This critical review comprehensively and systematically summarizes the fundamentals and recent advances of ZICs, including their compositions, two types of energy storage mechanisms, advantages and disadvantages of ZICs as well as their electrode materials, electrolytes and new types of devices. Moreover, the present challenges and future research directions of ZICs are proposed, which need further research. This review is expected to provide good guidance for the design and exploitation of high‐performance ZICs to realize their potential practical applications.
Sarin, used as chemical warfare agents (CWAs) for terrorist attacks, can induce a number of virulent effects. Therefore, countermeasures which could realize robust and convenient detection of sarin are in exigent need. A concise charge-transfer colorimetric and fluorescent probe (4-(6-(tert-butyl)pyridine-2-yl)-N,N-diphenylaniline, TBPY-TPA) that could be capable of real-time and on-site monitoring of DCP vapor was reported in this contribution. Upon contact with DCP, the emission band red-shifted from 410 to 522 nm upon exposure to DCP vapor. And the quenching rate of TBPY-TPA reached up to 98% within 25 s. Chemical substances such as acetic acid (HAc), dimethyl methylphosphonate (DMMP), pinacolyl methylphosphonate (PAMP), and triethyl phosphate (TEP) do not interfere with the detection. A detection limit for DCP down to 2.6 ppb level is remarkably achieved which is below the Immediately Dangerous to Life or Health concentration. NMR data suggested that a transformation of the pyridine group into pyridinium salt via a cascade reaction is responsible for the sensing process which induced the dramatic fluorescent red shift. All of these data suggest TBPY-TPA is a promising fluorescent sensor for a rapid, simple, and low-cost method for DCP detection, which could be easy to prepare as a portable chemosensor kit for its practical application in real-time and on-site monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.